Terroir 2020 banner
IVES 9 IVES Conference Series 9 Wine metabolomics and sensory profile in relation to terroir: A case study focusing on different wine-growing areas of Piacenza Province (Italy)

Wine metabolomics and sensory profile in relation to terroir: A case study focusing on different wine-growing areas of Piacenza Province (Italy)

Abstract

Aim: In this work, we have optimized a robust methodology for investigating possible correlations between the phytochemical profile of wine and the terroir (including the climate), considering the specific wine-growing area. In particular, the untargeted metabolomic and sensorial profiles of Gutturnio DOC commercial wines (both still and “frizzante” types) from different production areas in the Piacenza province were determined. The geographical areas taken into consideration for this study consisted in Val Tidone, Val Nure and Val d’Arda.

Methods and Results: A metabolomic approach based on ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF) was used to investigate the untargeted phenolic profiles of “Gutturnio” DOC wines from different growing areas, namely Val Tidone, Val Nure, and Val d’Arda, located in Piacenza province (Emilia Romagna region, Italy, 45 °Lat N). In this regard, eight “Gutturnio” wines (both still and “frizzante”) from the same vintage (2016) were compared in order to highlight the impact of terroir on their chemical composition and sensory profile. Besides, correlations between wine chemical composition and climatic data of each of the three valleys have been investigated. The highest content of phenolic acids was recorded in still Gutturnio wines from Val Tidone and Val d’Arda (i.e., 389.9 and 388.2 mg/L, respectively). Both unsupervised and supervised multivariate statistical analyses (hierarchical clustering, principal component analysis, and partial least squares discriminant analysis) of metabolomics-based data allowed the different samples to be clearly discriminated according to the corresponding growing-areas. Interestingly, the most discriminant compounds allowing sample grouping belonged to phenolic acids (such as isomeric forms of diferuloylquinic acid) and alkylphenols (such as 5-heptadecylresorcinol). Besides, the Venn diagram analysis revealed seven common markers belonging to both conditions under investigation (i.e., terroir and winemaking practices). Besides, strong correlations were outlined between flavonoids, lignans, and phenolic acids with climatic data. Finally, sensory analysis allowed clear discrimination between still vs” frizzante” Gutturnio wines. 

Conclusions: 

The untargeted phenolic profiling was able to discriminate Gutturnio wine samples according to both terroir and vinification methods. Also, strong correlation coefficients were outlined when considering polyphenol profiles and climatic data, although further ad-hoc studies are needed to confirm this occurrence.

Significance and Impact of the Study: Preliminary and potential correlations have been identified between the phytochemical profile and sensorial quality of Gutturnio wines as related to both growing areas and vinification type.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Gabriele Rocchetti1, Luigi Lucini1, Emilia Calza2, Luigi Odello3, Luigi Bavaresco2

1Department for Sustainable Food Process, UCSC, Piacenza, Italy
2Department of Sustainable Crop Production, UCSC, Piacenza, Italy
3Centro Studi Assaggiatori, Brescia, Italy

Contact the author

Keywords

Wine metabolomics, foodomics, terroir, polyphenols, sensory quality

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Over the last decade, the use of non-Saccharomyces yeasts in the winemaking process has been re-assessed and accepted by winemakers. These yeasts can be used to achieve specific objectives such as lowering the ethanol content, preventing wine spoilage and increasing the production of specific aroma compounds. Since these species are unable to complete alcoholic fermentation, strategies of co- and sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae have been developed. However, when mixed starter cultures are used, several parameters (e.g. strain yeast, inoculation timing and nutrient competitions) impact the growth of the individual yeasts, the fermentation kinetics and the metabolites/aroma production. In particular, competition for nitrogen compounds could have a major impact, potentially leading to sluggish fermentation when the yeast assimilable nitrogen (YAN) availability is low. Moreover, many aroma compounds produced by the yeasts are directly produced and influenced by nitrogen metabolism such as higher alcohols, acetate esters and ethyl esters which participate in the organoleptic complexity of wine.

What practices in the vineyard lead to the production of wines that consistently win medals?

High quality wines start in the vineyard however little is known about the role vineyard management practices play in this quality outcome. Gold medals and well-known regionality increase consumer preference for purchasing a wine. An increase in the former will certainly also drive an increase in the latter and therefore practices in production that consistently lead to gold medal winning wines will improve both the marketability of the region and its products. It is argued that vinification is the main driver of wine quality and in fact, the presence of some oak compounds is a well-known consumer and expert mark of quality. However, only select wines are vinified in oak and therefore the original grape quality at the winery door must in fact drive all further downstream vinification decisions.

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Increasing soil organic carbon (SOC) in vineyards enhances soil health with associated benefits for climate change resilience and mitigation.

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Application of GiESCO “bio-metaethics” charter in practice: the “direct” involvement of vine grower, winemaker, society

On the basis of a direct agreement between the GiESCO and the vine grower, the winemaker and the consumers (individual; company; public or private organizations), the communication on the content of the charter can be done as follows:
• Commitment to respect the basic rules of the GiESCO “BIO – MetaEthics” charter.
1/ Put Mankind in the depth of all concerns in a universal context: (grower, consumer, citizen, work valuing, education, security)
2/ Insure minimum impact on environment by optimizing cultivation technics: (maximum of natural biodegradable products, friendly practices, short channels, renewable energies, terroir sustainability)