Terroir 2020 banner
IVES 9 IVES Conference Series 9 Wine metabolomics and sensory profile in relation to terroir: A case study focusing on different wine-growing areas of Piacenza Province (Italy)

Wine metabolomics and sensory profile in relation to terroir: A case study focusing on different wine-growing areas of Piacenza Province (Italy)

Abstract

Aim: In this work, we have optimized a robust methodology for investigating possible correlations between the phytochemical profile of wine and the terroir (including the climate), considering the specific wine-growing area. In particular, the untargeted metabolomic and sensorial profiles of Gutturnio DOC commercial wines (both still and “frizzante” types) from different production areas in the Piacenza province were determined. The geographical areas taken into consideration for this study consisted in Val Tidone, Val Nure and Val d’Arda.

Methods and Results: A metabolomic approach based on ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF) was used to investigate the untargeted phenolic profiles of “Gutturnio” DOC wines from different growing areas, namely Val Tidone, Val Nure, and Val d’Arda, located in Piacenza province (Emilia Romagna region, Italy, 45 °Lat N). In this regard, eight “Gutturnio” wines (both still and “frizzante”) from the same vintage (2016) were compared in order to highlight the impact of terroir on their chemical composition and sensory profile. Besides, correlations between wine chemical composition and climatic data of each of the three valleys have been investigated. The highest content of phenolic acids was recorded in still Gutturnio wines from Val Tidone and Val d’Arda (i.e., 389.9 and 388.2 mg/L, respectively). Both unsupervised and supervised multivariate statistical analyses (hierarchical clustering, principal component analysis, and partial least squares discriminant analysis) of metabolomics-based data allowed the different samples to be clearly discriminated according to the corresponding growing-areas. Interestingly, the most discriminant compounds allowing sample grouping belonged to phenolic acids (such as isomeric forms of diferuloylquinic acid) and alkylphenols (such as 5-heptadecylresorcinol). Besides, the Venn diagram analysis revealed seven common markers belonging to both conditions under investigation (i.e., terroir and winemaking practices). Besides, strong correlations were outlined between flavonoids, lignans, and phenolic acids with climatic data. Finally, sensory analysis allowed clear discrimination between still vs” frizzante” Gutturnio wines. 

Conclusions: 

The untargeted phenolic profiling was able to discriminate Gutturnio wine samples according to both terroir and vinification methods. Also, strong correlation coefficients were outlined when considering polyphenol profiles and climatic data, although further ad-hoc studies are needed to confirm this occurrence.

Significance and Impact of the Study: Preliminary and potential correlations have been identified between the phytochemical profile and sensorial quality of Gutturnio wines as related to both growing areas and vinification type.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Gabriele Rocchetti1, Luigi Lucini1, Emilia Calza2, Luigi Odello3, Luigi Bavaresco2

1Department for Sustainable Food Process, UCSC, Piacenza, Italy
2Department of Sustainable Crop Production, UCSC, Piacenza, Italy
3Centro Studi Assaggiatori, Brescia, Italy

Contact the author

Keywords

Wine metabolomics, foodomics, terroir, polyphenols, sensory quality

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Closure permeability modulates the aroma expression of monovarietal white wines during bottle ageing

Bottle ageing is a critical period for wine quality, as it undergoes various chemical and sensory changes during storage. Ideally, a phase of qualitative ageing, during which wine sensory quality improves, is followed by a decline of quality. Understanding how different oenological variables influence these phases is a key challenge in modern winemaking. Recent studies highlighted the significant role of oxygen in modulating reactions involving volatile and non-volatile components, impacting aroma evolution during bottle aging. Oxygen exposure of wine during bottle ageing is mediated by closure.

The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

The objective of the present work is to assess yeast effects on the development of wine varietal aroma throughout aging and on wine longevity.

Three independent experiments were carried out; two fermenting semi-synthetic musts fortified with polyphenols and aroma precursors extracted from Tempranillo (1) or Albariño (2) grapes and with synthetic precursors of polyfunctional mercaptans (PFMs), and a third in which a must, mixture of 6 different grape varieties was used. In all cases, fermentations were carried out by different Saccharomyces cerevisiae strains and one S. kudriavzevii, and the obtained wines were further submitted to anoxic accelerated aging to reproduce bottle aging. The volatile profile of the wines was analyzed using several chromatographic procedures, in order to provide a comprehensive evaluation of wine aroma. Aroma compounds analyzed included fermentation volatile metabolites, grape-derived aroma compounds including PFMs, and Strecker aldehydes (SA).

Results revealed that the effects of yeast on wine aroma throughout its self-life extend along three main axes:

1. A direct or indirect action on primary varietal aroma and on its evolution during wine
aging.

2. The direct production of SA during fermentation and/or their delayed formation by producing the required reagents (amino acids + dicarbonyls) for Strecker degradation
during anoxic aging.

3. Producing acids (leucidic, branched acids) precursors to fruity esters. More specifically, and leaving aside the infrequent de novo formation, the action of the different strains of yeast on primary varietal aroma takes four different forms:

1.- Speeding the hydrolysis of aroma precursors, which leads to early aroma formation without changing the amount of aroma formed. In the case of labile molecules, such as linalool, the enhancement of young wine aroma implies a short-living wine. 2.- Metabolizing the aroma precursor, reducing the amounts of aroma formed, which can be of advantage for negative aroma compounds, such as TDN or guaiacol; 3.- Transforming grape components into aroma precursors, increasing the amounts of aroma formed, as for ethyl cinnamate, leucidic acid or vinylphenols; 4.- Forming reactive species such as vinylphenols able to destroy varietal polyfunctional mercaptans.

Overall, it can be concluded that the yeast carrying alcoholic fermentation not only influences fermentative wine aroma but also affects to the wine varietal aroma, to its evolution during aging and to the development of oxidative off-odors

Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Le climat a de fortes implications sur le bon fonctionnement physiologique de la vigne et a besoin d’être quantifié afin de déterminer l’aptitude des régions à la culture de la vigne. Une méthode, qui pourrait éventuellement servir à prévoir l’aptitude des régions à la culture de la vigne, est proposée.

Impact of the pre-fermentative addition of enological adjuvants on the development of UTA in wines

During alcoholic fermentation and wine aging, indole-3-acetic acid (IAA) can degrade into 2-aminoacetophenone (AAP). The presence of reasonable amount of AAP in wines is regarded as the main cause of untypical ageing

Regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area. The potential for innovation lies in developing and combining new approaches that make agriculture more environmentally sustainable and enable a circular economy capable of improving farmers’ incomes. Primarily REVINE aims to improve soil health and biodiversity by promoting the multiplication of soil saprophytic microorganisms and the presence of useful microorganisms linked to the life cycle of the plant, such as rhizobacteria (PGPR) and fungi (PGPF) that promote plant growth which, in addition to increasing plant performance, increase tolerance to biotic and abiotic stresses.