Terroir 2020 banner
IVES 9 IVES Conference Series 9 Wine metabolomics and sensory profile in relation to terroir: A case study focusing on different wine-growing areas of Piacenza Province (Italy)

Wine metabolomics and sensory profile in relation to terroir: A case study focusing on different wine-growing areas of Piacenza Province (Italy)

Abstract

Aim: In this work, we have optimized a robust methodology for investigating possible correlations between the phytochemical profile of wine and the terroir (including the climate), considering the specific wine-growing area. In particular, the untargeted metabolomic and sensorial profiles of Gutturnio DOC commercial wines (both still and “frizzante” types) from different production areas in the Piacenza province were determined. The geographical areas taken into consideration for this study consisted in Val Tidone, Val Nure and Val d’Arda.

Methods and Results: A metabolomic approach based on ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF) was used to investigate the untargeted phenolic profiles of “Gutturnio” DOC wines from different growing areas, namely Val Tidone, Val Nure, and Val d’Arda, located in Piacenza province (Emilia Romagna region, Italy, 45 °Lat N). In this regard, eight “Gutturnio” wines (both still and “frizzante”) from the same vintage (2016) were compared in order to highlight the impact of terroir on their chemical composition and sensory profile. Besides, correlations between wine chemical composition and climatic data of each of the three valleys have been investigated. The highest content of phenolic acids was recorded in still Gutturnio wines from Val Tidone and Val d’Arda (i.e., 389.9 and 388.2 mg/L, respectively). Both unsupervised and supervised multivariate statistical analyses (hierarchical clustering, principal component analysis, and partial least squares discriminant analysis) of metabolomics-based data allowed the different samples to be clearly discriminated according to the corresponding growing-areas. Interestingly, the most discriminant compounds allowing sample grouping belonged to phenolic acids (such as isomeric forms of diferuloylquinic acid) and alkylphenols (such as 5-heptadecylresorcinol). Besides, the Venn diagram analysis revealed seven common markers belonging to both conditions under investigation (i.e., terroir and winemaking practices). Besides, strong correlations were outlined between flavonoids, lignans, and phenolic acids with climatic data. Finally, sensory analysis allowed clear discrimination between still vs” frizzante” Gutturnio wines. 

Conclusions: 

The untargeted phenolic profiling was able to discriminate Gutturnio wine samples according to both terroir and vinification methods. Also, strong correlation coefficients were outlined when considering polyphenol profiles and climatic data, although further ad-hoc studies are needed to confirm this occurrence.

Significance and Impact of the Study: Preliminary and potential correlations have been identified between the phytochemical profile and sensorial quality of Gutturnio wines as related to both growing areas and vinification type.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Gabriele Rocchetti1, Luigi Lucini1, Emilia Calza2, Luigi Odello3, Luigi Bavaresco2

1Department for Sustainable Food Process, UCSC, Piacenza, Italy
2Department of Sustainable Crop Production, UCSC, Piacenza, Italy
3Centro Studi Assaggiatori, Brescia, Italy

Contact the author

Keywords

Wine metabolomics, foodomics, terroir, polyphenols, sensory quality

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Optimization of aroma production in grape cell suspensions induced by chemical elicitor

Methyl-jasmonate (MeJA) induces the production of at least 25 compounds with sesquiterpene- like mass spectra in ‘Cabernet sauvignon’. Tost effective concentration of MeJA in stimulating the production of sesquiterpenes was found to be 500 µM if added when the cell suspensions had a PCV of 35 %, and 1000 if added when the cell suspensions had a PCV of 70 %.

Text mining of wine reviews to investigate quality markers of ‘Nebbiolo’ wines from Valtellina

In Valtellina zone (north Italy), the winemaking of ‘Nebbiolo’ grapes leads to the production of two main wine types: classic red wines from fresh grapes, usually classified as Valtellina Superiore DOCG (mandatory oak aging) or Rosso di Valtellina DOC, and the Sforzato di Valtellina DOCG, which is produced using withered grapes according to traditional product specification and subjected to mandatory oak aging process. The withering process influences grape chemical composition and, in turn, the wine sensory profile, which is strongly linked to the wine quality and typicity perceived by consumers.

Cultures des vignobles en forte pente: possibilités de mécanisation. Effet de l’exposition et de l’orientation des rangs

Plus de la moitié du vignoble suisse (14’000 ha) est situé sur des coteaux en forte pente (> 30%). Dans certains vignobles, la pente naturelle du terrain a été réduite par la construction de terrasses soutenues par des murs.

Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Grapevine physiology and production are challenged by forecasted increases in temperature and water deficits. Within this scenario, photoselective overhead shade films are promising tools in warm viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berry to solar radiation overexposure and optimize shade film use for berry integrity. A randomized complete block design field study was conducted across two years (2020-2021) in Oakville, Napa Valley, CA, with four shade films (D1, D3, D4, D5) differing in the percent of radiation spectra transmitted and compared to an uncovered control (C0). Integrals for gas exchange parameters and mid-day stem water potential were unaffected by the shade films in 2020 and 2021. By harvest, berries from uncovered and shaded vines did not differ in their size or primary metabolism in either year. Despite precipitation exclusion during the dormant season in the shaded treatments, yield did not differ between them and the control in either season. In 2020, total skin anthocyanins (mg/g fresh mass) in the shaded treatments was greater than C0 during berry ripening and at harvest. Conversely, flavonol concentrations in 2020 were reduced in shaded vines compared to C0. The 2020 growing season highlighted the impact of heat degradation on flavonoids. Flavonoid concentrations in 2021 increased until harvest while flavonoid degradation was apparent from veraison to harvest in 2020 across shaded and control vines. Wine analyses highlighted the importance of light spectra to modify wine composition. Wine color intensity, tonality and anthocyanin values were enhanced in D4 whereas antioxidant properties were enhanced in C0 and D5 wines. Altogether, our results highlighted the need of new approaches in warm viticulture areas given the impact that composition of light has on berry and wine quality.

Discrimination of South Tyrol’s wines by their cultivation practices: A detailed mass spectrometric approach

Climate change is having a profound effect on viticulture by altering the conditions under which vines grow, leading to increased water stress and earlier harvests, which in turn affect the quality and character of wines [1].