Terroir 2020 banner
IVES 9 IVES Conference Series 9 Characterising the chemical typicality of regional Cabernet Sauvignon wines

Characterising the chemical typicality of regional Cabernet Sauvignon wines

Abstract

Aim: To define the uniqueness of Australian Cabernet Sauvignon wines by evaluation of the chemical composition (volatile aroma and non-volatile constituents) that may drive regional typicity, and to correlate this with comprehensive sensory analysis data to identify the most important compounds driving relevant sensory attributes.

Methods and Results: A range of specialised analytical methods have been optimised to quantify more than 70 volatile aroma compounds in Cabernet Sauvignon wine. These methods examine a diverse array of metabolites that originate from the grape, fermentation, maturation and oak maturation. Examination of a variety of non-volatile compounds such as tannins, basic chemistry and non-volatile secondary metabolites were also undertaken. These analytes were quantified in 2015 commercial Cabernet Sauvignon wines (n = 52) originating from Coonawarra, Margaret River, Yarra Valley and Bordeaux. Multivariate statistical analysis of chemical datasets and sensory ratings obtained by a trained descriptive analysis panel identified compounds driving aroma attributes that distinguished wines from the different regions. Some compounds, such as dimethyl sulfide, which arises from a grape amino acid and is described as ‘black currant or olive’ at low concentration and ‘canned vegetables’ at high concentration, were not statistically different amongst regions. In contrast, compounds such as 1,4-cineole (‘mint’ and ‘bay leaf’ aroma), 3-isobutyl-2-methoxypyrazine (‘green capsicum’ aroma) and 4-ethylphenol (‘earthy’ and ‘band-aid’ aroma) were able to differentiate the wines.

Conclusions: 

For the first time, this work has revealed various wine chemical constituents, both volatile and non-volatile, that have been linked with results from comprehensive sensory analysis to determine the important drivers of regional typicity of Australian Cabernet Sauvignon wines. Identifying these candidates will lead us to the next step of identifying which viticultural and/or winemaking practices can influence these compounds to meet target styles for wines of provenance.

Significance and Impact of the Study: Identifying the chemical markers that characterise Cabernet Sauvignon regional typicity will lead Australian producers one step closer to having the tools to preserve the ‘uniqueness’ of their regional wines. A greater understanding of chemical drivers of wine sensory traits will keep the industry at the forefront of the field internationally and will provide producers with knowledge that can be used for promoting their wines and enhancing sales.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Dimitra L. Capone1,2*, Paul Boss3, Lira Souza Gonzaga1,2, Susan E.P. Bastian1,2, David W. Jeffery1,2

1Australian Research Council Training Centre for Innovative Wine Production, Australia
2Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
3CSIRO, Locked Bag 2, Glen Osmond, South Australia 5064, Australia

Contact the author

Keywords

Regional typicity, chemical markers, wine sensory traits, Cabernet Sauvignon

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Market entry strategies in the U.S. alcohol distribution: The case of French wine exporters

This study examines the different strategies adopted by wine exporters located in France for penetrating international alcohol distribution networks in the U.S. market (and to a lesser extent the Canadian market). Grounded in the Business-to-Business (B2B) marketing literature (Ellegaard and Medlin, 2018), this study adopts a framework integrating a ‘Stakeholder’ approach for understanding the logics behind exporters’ strategies to penetrate the alcohol distribution networks (wholesalers, importers, alcohol monopolies).

Smoke tainted wine – what now?

The frequency of bushfires close to wine regions around the world has increased in the last two decades. The economic losses incurred when grapes and wines are discarded due to ‘smoke taint’ are substantial (i.e., hundreds of millions of dollars). Efforts to mitigate and ameliorate smoke taint are therefore crucial. Chardonnay, rosé and cabernet sauvignon wines made from grapes exposed to smoke during the 2020 wildfires in eastern Australia were subjected to various amelioration techniques: the addition of activated carbons, molecularly imprinted polymers (mips), and a proprietary resin (either directly, or following membrane filtration); spinning cone column (scc) distillation; and finally, transformation into vinegar.

Intra-block variations of vine water status in time and space

Vine water status was measured on 96 plots of three vines inside a vineyard block of 0.28 ha during three years: 2003, 2004 and 2005. Three physiological indicators were implemented: stem water potential, carbon isotope discrimination measured on grape sugars at ripeness (δ13C) and canopy temperature measured by high resolution remote sensing. For stem water potential, measurements were taken on every single vine of each plot.

Gas chromatography-olfactometry characterization of corvina and corvinone young and aged wines

AIM AND METHODS: Corvina and Corvinone are the two main grape varieties used in the production of Valpolicella, Recioto and Amarone, top-quality red wines in north-eastern Italy. This work aimed at determining the aroma composition of Corvina and Corvinone experimental wines and identify the main aroma compounds contributing to the aroma characteristics of Corvina and Corvinone monovarietal wines. Five Corvina and five Corvinone wines were studied, the grapes coming from five different vineyards in Valpolicella. Volatile compounds were extracted by SPE and identified and quantified by gas chromatography-mass spectrometry (GC-MS), whereas their aroma impact was determined by gas chromatography- olfactometry (GC-O).RESULTS: Based on the GC-MS-O analysis, 95 odor zones were detected, from which 68 compounds were successfully identified. Using the criterion of a value higher than 30% in modified frequency (MF %), 51 compounds were selected and grouped according to odor similarity. Compounds with values below 30% were discarded.

Development of novel drought-tolerant grape cultivars from Monastrell: enhancing anthocyanin and flavonol content under elevated temperatures

The ongoing challenge of climate change is driving the need for novel oenological approaches aimed at finding effective environmental solutions.