Terroir 2020 banner
IVES 9 IVES Conference Series 9 Characterising the chemical typicality of regional Cabernet Sauvignon wines

Characterising the chemical typicality of regional Cabernet Sauvignon wines

Abstract

Aim: To define the uniqueness of Australian Cabernet Sauvignon wines by evaluation of the chemical composition (volatile aroma and non-volatile constituents) that may drive regional typicity, and to correlate this with comprehensive sensory analysis data to identify the most important compounds driving relevant sensory attributes.

Methods and Results: A range of specialised analytical methods have been optimised to quantify more than 70 volatile aroma compounds in Cabernet Sauvignon wine. These methods examine a diverse array of metabolites that originate from the grape, fermentation, maturation and oak maturation. Examination of a variety of non-volatile compounds such as tannins, basic chemistry and non-volatile secondary metabolites were also undertaken. These analytes were quantified in 2015 commercial Cabernet Sauvignon wines (n = 52) originating from Coonawarra, Margaret River, Yarra Valley and Bordeaux. Multivariate statistical analysis of chemical datasets and sensory ratings obtained by a trained descriptive analysis panel identified compounds driving aroma attributes that distinguished wines from the different regions. Some compounds, such as dimethyl sulfide, which arises from a grape amino acid and is described as ‘black currant or olive’ at low concentration and ‘canned vegetables’ at high concentration, were not statistically different amongst regions. In contrast, compounds such as 1,4-cineole (‘mint’ and ‘bay leaf’ aroma), 3-isobutyl-2-methoxypyrazine (‘green capsicum’ aroma) and 4-ethylphenol (‘earthy’ and ‘band-aid’ aroma) were able to differentiate the wines.

Conclusions: 

For the first time, this work has revealed various wine chemical constituents, both volatile and non-volatile, that have been linked with results from comprehensive sensory analysis to determine the important drivers of regional typicity of Australian Cabernet Sauvignon wines. Identifying these candidates will lead us to the next step of identifying which viticultural and/or winemaking practices can influence these compounds to meet target styles for wines of provenance.

Significance and Impact of the Study: Identifying the chemical markers that characterise Cabernet Sauvignon regional typicity will lead Australian producers one step closer to having the tools to preserve the ‘uniqueness’ of their regional wines. A greater understanding of chemical drivers of wine sensory traits will keep the industry at the forefront of the field internationally and will provide producers with knowledge that can be used for promoting their wines and enhancing sales.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Dimitra L. Capone1,2*, Paul Boss3, Lira Souza Gonzaga1,2, Susan E.P. Bastian1,2, David W. Jeffery1,2

1Australian Research Council Training Centre for Innovative Wine Production, Australia
2Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
3CSIRO, Locked Bag 2, Glen Osmond, South Australia 5064, Australia

Contact the author

Keywords

Regional typicity, chemical markers, wine sensory traits, Cabernet Sauvignon

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Temperature effects on the biosynthesis of aroma compounds in glera grapes

This paper describes the first year results of a study that investigated the effects of altitude and related temperature parameters on the biosynthesis of aromas in the Italian cultivar Glera.

Characterization of a strain of Lachancea thermotolerans, microorganism of choice when facing the climatic challenges of the wine sector

Current climatic challenges in the wine sector require innovative solutions to maintain the quality of wines while adapting oenological practices to changing conditions. This article presents the detailed study of a lachancea thermotolerans strain on matrices typical of the French mediterranean area.

Variability of Tempranillo phenology within the toro do (Spain) and its relationship to climatic characteristics

Aims: The objective of this research was to analyse the spatial and temporal variability of vine phenology of the Tempranillo variety in the Toro Designation of Origen (DO) related to climatic conditions at present and under future climate change scenarios.

Techniques to study graft union formation in grapevine

Grapevines are grown grafted in most viticultural regions. Grapevine rootstocks are either hybrids or pure species of different American Vitis spp. (particularly V. berlandieri, V. rupestris and V. riparia), which were primarily used to provide root resistance to the insect pest Phylloxera. In addition to Phylloxera resistance, grapevine rootstocks were also selected in relation their resistance to various abiotic stress conditions. Future rootstocks should have the potential to adapt viticulture to climate change without changing the characteristics of the harvested product. However, high grafting success rates are an essential prerequisite to be able to use them with all the varieties. The objective of this work is to develop quantitative techniques to characterize graft union formation in grapevine.

Combined use of leaf removal and natural shading to delay grape ripening in Manto negro (Vitis vinifera L.) under deficit irrigation 

The increasingly frequent heat waves during grape ripening pose challenges for premium wine grape production. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality.