Terroir 2020 banner
IVES 9 IVES Conference Series 9 Characterising the chemical typicality of regional Cabernet Sauvignon wines

Characterising the chemical typicality of regional Cabernet Sauvignon wines

Abstract

Aim: To define the uniqueness of Australian Cabernet Sauvignon wines by evaluation of the chemical composition (volatile aroma and non-volatile constituents) that may drive regional typicity, and to correlate this with comprehensive sensory analysis data to identify the most important compounds driving relevant sensory attributes.

Methods and Results: A range of specialised analytical methods have been optimised to quantify more than 70 volatile aroma compounds in Cabernet Sauvignon wine. These methods examine a diverse array of metabolites that originate from the grape, fermentation, maturation and oak maturation. Examination of a variety of non-volatile compounds such as tannins, basic chemistry and non-volatile secondary metabolites were also undertaken. These analytes were quantified in 2015 commercial Cabernet Sauvignon wines (n = 52) originating from Coonawarra, Margaret River, Yarra Valley and Bordeaux. Multivariate statistical analysis of chemical datasets and sensory ratings obtained by a trained descriptive analysis panel identified compounds driving aroma attributes that distinguished wines from the different regions. Some compounds, such as dimethyl sulfide, which arises from a grape amino acid and is described as ‘black currant or olive’ at low concentration and ‘canned vegetables’ at high concentration, were not statistically different amongst regions. In contrast, compounds such as 1,4-cineole (‘mint’ and ‘bay leaf’ aroma), 3-isobutyl-2-methoxypyrazine (‘green capsicum’ aroma) and 4-ethylphenol (‘earthy’ and ‘band-aid’ aroma) were able to differentiate the wines.

Conclusions: 

For the first time, this work has revealed various wine chemical constituents, both volatile and non-volatile, that have been linked with results from comprehensive sensory analysis to determine the important drivers of regional typicity of Australian Cabernet Sauvignon wines. Identifying these candidates will lead us to the next step of identifying which viticultural and/or winemaking practices can influence these compounds to meet target styles for wines of provenance.

Significance and Impact of the Study: Identifying the chemical markers that characterise Cabernet Sauvignon regional typicity will lead Australian producers one step closer to having the tools to preserve the ‘uniqueness’ of their regional wines. A greater understanding of chemical drivers of wine sensory traits will keep the industry at the forefront of the field internationally and will provide producers with knowledge that can be used for promoting their wines and enhancing sales.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Dimitra L. Capone1,2*, Paul Boss3, Lira Souza Gonzaga1,2, Susan E.P. Bastian1,2, David W. Jeffery1,2

1Australian Research Council Training Centre for Innovative Wine Production, Australia
2Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
3CSIRO, Locked Bag 2, Glen Osmond, South Australia 5064, Australia

Contact the author

Keywords

Regional typicity, chemical markers, wine sensory traits, Cabernet Sauvignon

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Dimethyl sulfide transfer through wine closures during bottle aging: implications for wine aroma management

Dimethyl sulfide (DMS) is a volatile sulfur compound with a complex role in wine aroma, contributing both desirable and undesirable sensory characteristics depending on its concentration (1).

Valutazione comparativa di cloni di Pinot nero per la produzione di vini base spumante in alcuni ambienti del Piemonte

Un vasto programma si riferisce alla verifica di 28 selezioni clonali di Pinot nero atte a vini base spumante. Gli impianti sono stati realizzati in diversi ambienti delle Langhe e del Monferrato nel periodo 1992-1996, in 57 vigneti diversi e su una superficie complessiva di circa 50 Ha.

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.

Above and below–research challenges for the future of winegrape production

Grapevines interact with the climate (aboveground) and the soil (belowground), affecting the characteristics of winegrapes produced. These interactions are impacted by climate change, the erosion of biodiversity, and losses of soil organic matter (SOM).

Basic Terroir Unit (U.T.B.) and quality control label for honey; making the designations of origin (A.O.C) and« crus » more coherent

Considérant d’une part la judicieuse mise au point d’un label de qualité contrôlée des miels suisses (STÖCKLI et al. 1997), considérant d’autre part l’élaboration d’une carte des paysages végétaux (HEGG et al. 1993),