Terroir 2020 banner
IVES 9 IVES Conference Series 9 Characterising the chemical typicality of regional Cabernet Sauvignon wines

Characterising the chemical typicality of regional Cabernet Sauvignon wines

Abstract

Aim: To define the uniqueness of Australian Cabernet Sauvignon wines by evaluation of the chemical composition (volatile aroma and non-volatile constituents) that may drive regional typicity, and to correlate this with comprehensive sensory analysis data to identify the most important compounds driving relevant sensory attributes.

Methods and Results: A range of specialised analytical methods have been optimised to quantify more than 70 volatile aroma compounds in Cabernet Sauvignon wine. These methods examine a diverse array of metabolites that originate from the grape, fermentation, maturation and oak maturation. Examination of a variety of non-volatile compounds such as tannins, basic chemistry and non-volatile secondary metabolites were also undertaken. These analytes were quantified in 2015 commercial Cabernet Sauvignon wines (n = 52) originating from Coonawarra, Margaret River, Yarra Valley and Bordeaux. Multivariate statistical analysis of chemical datasets and sensory ratings obtained by a trained descriptive analysis panel identified compounds driving aroma attributes that distinguished wines from the different regions. Some compounds, such as dimethyl sulfide, which arises from a grape amino acid and is described as ‘black currant or olive’ at low concentration and ‘canned vegetables’ at high concentration, were not statistically different amongst regions. In contrast, compounds such as 1,4-cineole (‘mint’ and ‘bay leaf’ aroma), 3-isobutyl-2-methoxypyrazine (‘green capsicum’ aroma) and 4-ethylphenol (‘earthy’ and ‘band-aid’ aroma) were able to differentiate the wines.

Conclusions: 

For the first time, this work has revealed various wine chemical constituents, both volatile and non-volatile, that have been linked with results from comprehensive sensory analysis to determine the important drivers of regional typicity of Australian Cabernet Sauvignon wines. Identifying these candidates will lead us to the next step of identifying which viticultural and/or winemaking practices can influence these compounds to meet target styles for wines of provenance.

Significance and Impact of the Study: Identifying the chemical markers that characterise Cabernet Sauvignon regional typicity will lead Australian producers one step closer to having the tools to preserve the ‘uniqueness’ of their regional wines. A greater understanding of chemical drivers of wine sensory traits will keep the industry at the forefront of the field internationally and will provide producers with knowledge that can be used for promoting their wines and enhancing sales.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Dimitra L. Capone1,2*, Paul Boss3, Lira Souza Gonzaga1,2, Susan E.P. Bastian1,2, David W. Jeffery1,2

1Australian Research Council Training Centre for Innovative Wine Production, Australia
2Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
3CSIRO, Locked Bag 2, Glen Osmond, South Australia 5064, Australia

Contact the author

Keywords

Regional typicity, chemical markers, wine sensory traits, Cabernet Sauvignon

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Water is the most abundant active compound in wine!

Proton relaxation in model and real wines was investigated by fast field cycling NMR relaxometry. Albeit protons of wine are largely belonging to water molecules, their magnetic relaxation rates actually depend on various physico-chemical parameters related to the state of the wine and to its composition.

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.

Exploring high throughput secondary trait phenomics to improve grapevine breeding

Modern grapevine breeding programs have overcome many challenges using genomic selection, which has allowed breeders to make targeted selections at earlier stages in the breeding process. However, the cost of genetic testing may present a burden for some programs, and markers often struggle to accurately predict quantitative traits. Recent advances in high throughput, high-dimensional data have provoked investigation into the use of high-dimensional phenomics as a low-cost addition to the grape breeder’s toolkit that may offer advantages in predicting quantitative traits. High-dimensional secondary trait (HDST) data has been employed in annual crops for prediction of agriculturally important traits such as yield.

Simulating the effect of heat waves on disease-resistant varieties

Agro-ecological transition and adaptation to climate change are the two major challenges facing modern agriculture.

Investigation of VvDXS function and its effects on muscat flavor levels

In the present study the connection between the positional candidate gene VvDXS and muscat flavor was evaluated by investigating the expression profiles in the berries from a Muscat-type cultivar and a neutral cultivar and its nucleotide diversity of full ORF on grapevine accessions.