Terroir 2020 banner
IVES 9 IVES Conference Series 9 Multispectral data from Sentinel-2 as a tool for monitoring late frost events on vineyards

Multispectral data from Sentinel-2 as a tool for monitoring late frost events on vineyards

Abstract

Aim: Climate change is altering some aspects of winegrape production with an advancement of phenological stages which may endanger viticultural areas in the event of a late frost. This study aims to evaluate the potential of satellite-based remote sensing to assess the damage and the recovery time after late frost events.

Methods and Results: Multispectral images derived from the Copernicus Sentinel-2 mission were used to monitor an area in north-eastern Italy affected by late frost in 2017. The study focused on Vitis vinifera cv. Garganega, a white variety mainly cultivated in the provinces of Vicenza and Verona. The reflectance values obtained from satellite imagery of the frost affected area (F) and control area (NF) were used to compute several vegetation indices (VIs). The reflectance of the spectral bands and VIs were compared using an unpaired two-sample t-test. Frost damage was detected by Chlorophyll Absorption Ratio Index (CARI), Enhanced Vegetation Index (EVI) and Modified Triangular Vegetation Index 1 (MTVI1) (P ≤ 0.0001, 0.0001, 0.05, respectively). The spectral bands more sensitive to assess the frost damage were Near-Infrared (NIR) and Red Edge (P ≤ 0.0001). The previous VIs/spectral bands, the Normalised Difference Vegetation Index (NDVI) and the Modified Simple Ratio (MSR) provided information on the full recovery time (P ≤ 0.0001) approximately 40 days after the frost event. 

Conclusions: 

The results suggest that multispectral data from Sentinel-2 have the potential to assess the damage and the recovery time of late frost in vineyards. Moreover, the analysis highlighted the spectral regions and the VIs more related to frost damage and recovery time detection. These findings suggest that Sentinel-2 data may represent a tool for prompt assessment and quantification of the damage, supporting reactive and effective decision-making.

Significance and Impact of the Study: The findings suggest that Sentinel-2 data may represent a cost-effective tool for prompt assessment and quantification of the damage, supporting reactive and effective decision-making. The insurance industry, which usually manage farmers’ risk, may benefit from a timely and near real-time overview of crop conditions.

Moreover, achieving valuable information from open-access imagery would represent the tool to extend the frost management from local to global scale.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Alessia Cogato1*, Franco Meggio2, Cassandra Collins3, Francesco Marinello1

1Department of Land, Environmental, Agriculture and Forestry, University of Padova, 35020 Legnaro (PD), Italy
2Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, 35020 Legnaro (PD), Italy 
3School of Agriculture, Food and Wine, The University of Adelaide, Waite Research Institute, Glen Osmond, SA 5064, Adelaide, Australia

Contact the author

Keywords

Spring frost, multispectral remote sensing, vegetation indices, grapevine, frost damage, Vitis vinifera

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

NIR based sensometric approach for consumer preference evaluation

Climate change has had a global impact on grape production, and as a result, developing table grape varieties that can withstand climate-related threats has become a significant goal. However, it is equally important to ensure that these new grape varieties meet the preferences of consumers. To achieve this goal, a procedure has been developed that combines sensory analysis with spectroscopic data collected in the NIR region. Each sample was analyzed using both traditional analytical techniques and non-destructive NIR spectroscopy.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Impact of SO2 addition before alcoholic fermentation on the oxidative stability of Chardonnay white wines

Sulfites (SO2) addition during winemaking is a widespread practice worldwide. This addition is realized at different steps of the winemaking due to the antimicrobial and antioxidant capacity of SO2. In a context of understanding white wines oxidative stability, knowledge about the impact of SO2 on the wine molecular diversity, especially compounds involved in the antioxidant capacity of wine, appears to be very important. In recent years, some studies have shown that SO2 can react with a large number of wine compounds resulting in the formation of numerous adducts. The diversity of compounds involved is important including in particular pyruvic acid, 2-keto-glutaric acid, glyceraldehyde, sugar, phenolics compounds but also amino acids or peptides. Moreover Roullier-Gall et al. have shown using FT-ICR-MS analysis that the molecular composition of wines remains impacted by addition of SO2 to the must (0, 4 and 8 g/hL SO2), several years after winemaking. Indeed, wines made from protected must (8g/hL SO2) contain a larger diversity of CHOS and CHONS compounds than wines made from unprotected must (0 g/hL SO2). The study of the impact of glutathione addition on the sensory oxidative stability has further shown that CHOS and CHONS compounds (amino acids, aromatic compounds and peptides) are markers of the antioxidant metabolome of white wines. This suggests that CHOS and CHONS compounds arise from SO2 adducts formation but also from a protecting effect of SO2 on the antioxidant metabolome of white wines.

Differentiating and grouping of oltrepo’ pavese environments according to grape maturation

The maturation patterns process has been very studied. In particular the modelization of the sugars and titratable acidity during the ripening period was an important approach, in particular for the prediction of harvest date (Barillere et al., 1988; Jourion et al.,1987; Maujean et al., 1983; Scienza, 1989). In Oltrepò Pavese, the widest viticultural district of Lombardy – Northern Italy – (about 15000 hectares), grape maturation trends shows high variability, due to the large variation in environmental characteristics of vineyards (altitude, exposure, soil type, mesoclimate) and to “cultivar x environment” interaction.

Juvenile-to-adult vegetative phase transition in grapevine 

The sequential activity of miR156 and miR172 controls the juvenile to adult phase transition in many plant species, where miR156 abundance decreases while miR172 increases along plant development. Very little is known about phase transition in horticultural woody species, which show substantially long vegetative phases. In grapevine, phase transition seems to be dissociated, displaying a first transition from juvenile to adult vegetative state in the first year, coincident with tendril differentiation and a subsequent induction of inflorescences in place of some of tendrils in later years under flowering inductive environmental conditions. Since grapevine is a highly heterozygous species, the generation of genetically homogeneous material for replicated transcriptomic analyses from seed-derived plants was a main challenge.