Terroir 2020 banner
IVES 9 IVES Conference Series 9 Multispectral data from Sentinel-2 as a tool for monitoring late frost events on vineyards

Multispectral data from Sentinel-2 as a tool for monitoring late frost events on vineyards

Abstract

Aim: Climate change is altering some aspects of winegrape production with an advancement of phenological stages which may endanger viticultural areas in the event of a late frost. This study aims to evaluate the potential of satellite-based remote sensing to assess the damage and the recovery time after late frost events.

Methods and Results: Multispectral images derived from the Copernicus Sentinel-2 mission were used to monitor an area in north-eastern Italy affected by late frost in 2017. The study focused on Vitis vinifera cv. Garganega, a white variety mainly cultivated in the provinces of Vicenza and Verona. The reflectance values obtained from satellite imagery of the frost affected area (F) and control area (NF) were used to compute several vegetation indices (VIs). The reflectance of the spectral bands and VIs were compared using an unpaired two-sample t-test. Frost damage was detected by Chlorophyll Absorption Ratio Index (CARI), Enhanced Vegetation Index (EVI) and Modified Triangular Vegetation Index 1 (MTVI1) (P ≤ 0.0001, 0.0001, 0.05, respectively). The spectral bands more sensitive to assess the frost damage were Near-Infrared (NIR) and Red Edge (P ≤ 0.0001). The previous VIs/spectral bands, the Normalised Difference Vegetation Index (NDVI) and the Modified Simple Ratio (MSR) provided information on the full recovery time (P ≤ 0.0001) approximately 40 days after the frost event. 

Conclusions: 

The results suggest that multispectral data from Sentinel-2 have the potential to assess the damage and the recovery time of late frost in vineyards. Moreover, the analysis highlighted the spectral regions and the VIs more related to frost damage and recovery time detection. These findings suggest that Sentinel-2 data may represent a tool for prompt assessment and quantification of the damage, supporting reactive and effective decision-making.

Significance and Impact of the Study: The findings suggest that Sentinel-2 data may represent a cost-effective tool for prompt assessment and quantification of the damage, supporting reactive and effective decision-making. The insurance industry, which usually manage farmers’ risk, may benefit from a timely and near real-time overview of crop conditions.

Moreover, achieving valuable information from open-access imagery would represent the tool to extend the frost management from local to global scale.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Alessia Cogato1*, Franco Meggio2, Cassandra Collins3, Francesco Marinello1

1Department of Land, Environmental, Agriculture and Forestry, University of Padova, 35020 Legnaro (PD), Italy
2Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, 35020 Legnaro (PD), Italy 
3School of Agriculture, Food and Wine, The University of Adelaide, Waite Research Institute, Glen Osmond, SA 5064, Adelaide, Australia

Contact the author

Keywords

Spring frost, multispectral remote sensing, vegetation indices, grapevine, frost damage, Vitis vinifera

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps.

Soil incorporation of new superabsorbent hydrogels to improve vine tolerance to summer stress: physiological validation and vineyard applications

Hydrogels are soil-conditioning materials capable of absorbing substantial amounts of water relative to their weight.

Impact of grapevine rootstock genotypes on nitrogen status of the scion and phenolic composition in Pinot noir berries and wine

Context and purpose of the study. Nitrogen (N) limitation enhances the production of phenolic compounds in grapes due to the downregulation of the flavonoid biosynthesis pathway.

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system. Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality.

Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements

Aim: Regional characters relating to Shiraz in Australia are not well documented. This study aimed to characterize the sensory, chemical and climate profiles of wines from various Australian Shiraz producing regions.