Terroir 2020 banner
IVES 9 IVES Conference Series 9 Multispectral data from Sentinel-2 as a tool for monitoring late frost events on vineyards

Multispectral data from Sentinel-2 as a tool for monitoring late frost events on vineyards

Abstract

Aim: Climate change is altering some aspects of winegrape production with an advancement of phenological stages which may endanger viticultural areas in the event of a late frost. This study aims to evaluate the potential of satellite-based remote sensing to assess the damage and the recovery time after late frost events.

Methods and Results: Multispectral images derived from the Copernicus Sentinel-2 mission were used to monitor an area in north-eastern Italy affected by late frost in 2017. The study focused on Vitis vinifera cv. Garganega, a white variety mainly cultivated in the provinces of Vicenza and Verona. The reflectance values obtained from satellite imagery of the frost affected area (F) and control area (NF) were used to compute several vegetation indices (VIs). The reflectance of the spectral bands and VIs were compared using an unpaired two-sample t-test. Frost damage was detected by Chlorophyll Absorption Ratio Index (CARI), Enhanced Vegetation Index (EVI) and Modified Triangular Vegetation Index 1 (MTVI1) (P ≤ 0.0001, 0.0001, 0.05, respectively). The spectral bands more sensitive to assess the frost damage were Near-Infrared (NIR) and Red Edge (P ≤ 0.0001). The previous VIs/spectral bands, the Normalised Difference Vegetation Index (NDVI) and the Modified Simple Ratio (MSR) provided information on the full recovery time (P ≤ 0.0001) approximately 40 days after the frost event. 

Conclusions: 

The results suggest that multispectral data from Sentinel-2 have the potential to assess the damage and the recovery time of late frost in vineyards. Moreover, the analysis highlighted the spectral regions and the VIs more related to frost damage and recovery time detection. These findings suggest that Sentinel-2 data may represent a tool for prompt assessment and quantification of the damage, supporting reactive and effective decision-making.

Significance and Impact of the Study: The findings suggest that Sentinel-2 data may represent a cost-effective tool for prompt assessment and quantification of the damage, supporting reactive and effective decision-making. The insurance industry, which usually manage farmers’ risk, may benefit from a timely and near real-time overview of crop conditions.

Moreover, achieving valuable information from open-access imagery would represent the tool to extend the frost management from local to global scale.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Alessia Cogato1*, Franco Meggio2, Cassandra Collins3, Francesco Marinello1

1Department of Land, Environmental, Agriculture and Forestry, University of Padova, 35020 Legnaro (PD), Italy
2Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, 35020 Legnaro (PD), Italy 
3School of Agriculture, Food and Wine, The University of Adelaide, Waite Research Institute, Glen Osmond, SA 5064, Adelaide, Australia

Contact the author

Keywords

Spring frost, multispectral remote sensing, vegetation indices, grapevine, frost damage, Vitis vinifera

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

The sensory features of the landscapes

When someone watches a hilly landscape, the image beauty creates emotions and frames of mind not easily forgettable, but sometimes man’s intervention by means of soil movement and reduction of the natural biodiversity can significantly modify the landscape and consequently the above-mentioned emotions. One speculates if sensory appreciation of a wine may be strongly affected by psychological factor: landscape beauty.

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.

Identification of arbuscular mycorrhizal fungi species preferentially associated with grapevine roots inoculated with commercial bioinoculants 

Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and can help plants acquire nutrients from the soil in exchange for photosynthetic carbon. Commercial bioinoculants containing AMF are widely available and represent a potential opportunity to reduce the dependence of grapevines on agrochemicals. However, which commercially available AMF species colonize vine roots and affect vine growth remains unknown. The aim of this study was to identify the AMF species from commercial bioinoculants that colonize grapevine roots using high-throughput sequencing, and to evaluate the performance of five commercial bioinoculants and their effects on own-rooted Cabernet sauvignon.

Effect of one-year cover crop and arbuscular mycorrhiza inocululation in the microbial soil community of a vineyard

The microbial composition of the soil is an important factor to consider in viticulture, since its influence on the “terroir” and on the organoleptic properties of the wine have been demonstrated. Different agronomic techniques have the potential to modify the composition and functionality of the soil microbial community. Maintaining green covers is known to increase soil microbial diversity. The direct application of inoculum of beneficial microorganisms to the soil has also been used to increase their abundance. However, the environmental conditions of each site seem to have a determining weight in the result of these practices. In this study, we compared the effect on the microbial community of a cover crop with legumes in autumn and the inoculation of grapevines with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseae in the previous spring. The study has been carried out in a vineyard in Binissalem, Mallorca, Spain. After applying the treatments, we will analyze the soil microbial communities using the data obtained from Illumina amplification of soil DNA from the 16S and ITS regions to analyze bacteria and fungi community, respectively. In addition, we will record the physicochemical characteristics of the soil at each sampling point. The result showed that agronomic management, in the short term, has less influence than soil characteristics on the composition of the soil microbiome. With these results, we can conclude that in a vineyard, agricultural techniques should focus on improving the characteristics of the soil to improve the biodiversity of the soil microbiota.

Effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes

In this video recording of the IVES science meeting 2024, Silvia Motta (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, Asti, Italy) speaks about the effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes. This presentation is based on an original article accessible for free on OENO One.