Terroir 2020 banner
IVES 9 IVES Conference Series 9 Multispectral data from Sentinel-2 as a tool for monitoring late frost events on vineyards

Multispectral data from Sentinel-2 as a tool for monitoring late frost events on vineyards

Abstract

Aim: Climate change is altering some aspects of winegrape production with an advancement of phenological stages which may endanger viticultural areas in the event of a late frost. This study aims to evaluate the potential of satellite-based remote sensing to assess the damage and the recovery time after late frost events.

Methods and Results: Multispectral images derived from the Copernicus Sentinel-2 mission were used to monitor an area in north-eastern Italy affected by late frost in 2017. The study focused on Vitis vinifera cv. Garganega, a white variety mainly cultivated in the provinces of Vicenza and Verona. The reflectance values obtained from satellite imagery of the frost affected area (F) and control area (NF) were used to compute several vegetation indices (VIs). The reflectance of the spectral bands and VIs were compared using an unpaired two-sample t-test. Frost damage was detected by Chlorophyll Absorption Ratio Index (CARI), Enhanced Vegetation Index (EVI) and Modified Triangular Vegetation Index 1 (MTVI1) (P ≤ 0.0001, 0.0001, 0.05, respectively). The spectral bands more sensitive to assess the frost damage were Near-Infrared (NIR) and Red Edge (P ≤ 0.0001). The previous VIs/spectral bands, the Normalised Difference Vegetation Index (NDVI) and the Modified Simple Ratio (MSR) provided information on the full recovery time (P ≤ 0.0001) approximately 40 days after the frost event. 

Conclusions: 

The results suggest that multispectral data from Sentinel-2 have the potential to assess the damage and the recovery time of late frost in vineyards. Moreover, the analysis highlighted the spectral regions and the VIs more related to frost damage and recovery time detection. These findings suggest that Sentinel-2 data may represent a tool for prompt assessment and quantification of the damage, supporting reactive and effective decision-making.

Significance and Impact of the Study: The findings suggest that Sentinel-2 data may represent a cost-effective tool for prompt assessment and quantification of the damage, supporting reactive and effective decision-making. The insurance industry, which usually manage farmers’ risk, may benefit from a timely and near real-time overview of crop conditions.

Moreover, achieving valuable information from open-access imagery would represent the tool to extend the frost management from local to global scale.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Alessia Cogato1*, Franco Meggio2, Cassandra Collins3, Francesco Marinello1

1Department of Land, Environmental, Agriculture and Forestry, University of Padova, 35020 Legnaro (PD), Italy
2Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, 35020 Legnaro (PD), Italy 
3School of Agriculture, Food and Wine, The University of Adelaide, Waite Research Institute, Glen Osmond, SA 5064, Adelaide, Australia

Contact the author

Keywords

Spring frost, multispectral remote sensing, vegetation indices, grapevine, frost damage, Vitis vinifera

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Assessing bunch architecture for grapevine yield forecasting by image analysis

It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages. The accuracy of the method for predicting bunch weight at different phenological stages was assessed for seven different varieties.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

The potential of multispectral/hyperspectral technologies for early detection of “flavescence dorée” in a Portuguese vineyard

“Flavescence dorée” (FD) is a grapevine quarantine disease associated with phytoplasmas and transmitted to healthy plants by insect vectors, mainly Scaphoideus titanus. Infected plants usually develop symptoms of stunted growth, unripe cane wood, leaf rolling, leaf yellowing or reddening, and shrivelled berries. Since plants can remain symptomless up to four years, they may act as reservoirs of FD contributing to the spread of the disease. So far, conventional management strategies rely mainly on the insecticide treatments, uprooting of infected plants and use of phytoplasma-free propagation material. However, these strategies are costly and could have undesirable environmental impacts. Thus, the development of sustainable and noninvasive approaches for early detection of FD and its management are of great importance to reduce disease spread and select the best cultural practices and treatments. The present study aimed to evaluate if multispectral/hyperspectral technologies can be used to detect FD before the appearance of the first symptoms and if infected grapevines display a spectral imaging fingerprint. To that end, physiological parameters (leaf area, chlorophyll content and photosynthetic rate) were collected in concomitance to the measurements of plant reflectance (using both a portable apparatus and a remote sensing drone). Measurements were performed in two leaves of 8 healthy and 8 FD-infected grapevines, at four timepoints: before the development of disease symptoms (21st June); and after symptoms appearance (ii) at veraison (2nd August); at post-veraison (11th September); and at harvest (25th September). At all timepoints, FD infected plants revealed a significant decrease in the studied physiological parameters, with a positive correlation with drone imaging data and portable apparatus analyses. Moreover, spectra of either drone imaging and portable apparatus showed clear differences between healthy and FD-infected grapevines, validating multispectral/ hyperspectral technology as a potential tool for the early detection of FD or other grapevine-associated diseases.

Aroma characterisation of mold resistant sparkling wines produced in a warm-temperate area

In recent years, resistant varieties have returned to the attention of the wine sector as a response to climate change and the reduction of pesticides in grapevine management, which is the main culprit of pesticide use in European agriculture. In this context, the production of sparkling wines could be strongly influenced due to its requirements for a particular balance between sugars and acidity, and the necessity of sound grapes to ensure wine quality. However, these parameters are not the only ones that define the suitability of a grape variety to produce sparkling wine.

Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps.