Terroir 2020 banner
IVES 9 IVES Conference Series 9 Vertical temperature gradient in the canopy provides opportunities to adapt training system in a climate change context

Vertical temperature gradient in the canopy provides opportunities to adapt training system in a climate change context

Abstract

Aims: The aims of this study were (1) to measure the vertical temperature gradient in the vine canopy in parcels with different vineyard floor management practices and (2) to analyze the factors influencing this gradient. The objective was to investigate whether the increase of trunk height could be an adaptation strategy to reduce air temperature in the bunch zone in a context of climate change. 

Methods and Results: The experiment for measuring the vertical temperature gradient has been set up in the Bordeaux area in 2016. Three replicates of four temperature sensors were installed on vine posts inside two adjacent vineyard parcels at different heights above ground: 30 cm, 60 cm, 90 cm and 120 cm. One parcel was managed with cover crop whereas in the other the soil was tilled.

The results of this study reveal an effect of measurement height and soil management modality on bioclimatic indices. The higher temperature sums are reached close to the ground, particularly on the parcel with cover crop. Only a small effect on delaying ripeness has been shown in this study. The increase of trunk height might minimize potential damage of both frost and heat wave events. Soil tilling also allows limiting spring frost risks. 

In order to better understand the explanatory factors impacting the vertical temperature gradients, different climatic factors (average temperature, wind, precipitation, insolation fraction) and soil moisture were studied by using the data of the weather station of Saint-Emilion (Météo-France). A strong effect of soil moisture was shown on maximum temperature gradients. Projections of climate change agree on an increase in air temperature in the future. Assuming the same rainfall patterns, this increase of temperature is likely to reduce soil moisture, and increase vertical gradients in maximum temperature. Taking into account this evolution, the increase of trunk height could be a promising adaptation. 

Conclusion: 

This study investigated the vertical temperature gradient and the driving factors for this gradient. Results show that rather than delaying the maturity, the increased of trunk height could be a solution to limit the negative impacts of frost and heat waves. This study also highlighted the impact of soil management and moisture on this gradient. 

Significance and Impact of the Study: The recent evolution of climate already has an impact on vine development and grape composition and it becomes necessary to implement adaptation strategies. The training system is one of the first potential levers for adaptation, relatively easy to implement. This study provides results on the impact of an increased of trunk height and soil management on temperature in the canopy, particularly in the fruit zone, assuming temperature profiles would not change. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Laure de Rességuier1*, Philippe Pieri1, Romain Pons1, Pierre Boudet1, Théo Petitjean1, Séverine Mary2, Cornelis van Leeuwen1

1EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
2VITINNOV, Bordeaux Sciences Agro, ISVV, 33175 Gradignan Cedex, France

Contact the author

Keywords

Vineyard soil management, vertical temperature gradient, grapevine training system, climate change

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

The use of remote sensing for intra-block vineyard management

L’unité de gestion technique d’un vignoble est aujourd’hui la parcelle. Néanmoins, au sein d’une même parcelle, la variabilité de l’expression végétative et de la constitution des raisins à maturité, peut être grande, en particulier à cause d’une hétérogénéité du sol.

Wine labelling with the list of ingredients: context, consumer’s perception and future challenges

In this video recording of the IVES science meeting 2024, Stéphane La Guerche (Œnoppia, Paris, France) speaks about wine labelling with the list of ingredients: context, consumer’s perception and future challenges. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Microbial consortia as a tool for sustainable vineyard management: A study on their acceptance among Veneto region’s grape-growers

Sustainability is a key focus in viticulture, where managing abiotic and biotic stress presents a major challenge.

Intra-block variations of vine water status in time and space

Vine water status was measured on 96 plots of three vines inside a vineyard block of 0.28 ha during three years: 2003, 2004 and 2005. Three physiological indicators were implemented: stem water potential, carbon isotope discrimination measured on grape sugars at ripeness (δ13C) and canopy temperature measured by high resolution remote sensing. For stem water potential, measurements were taken on every single vine of each plot.

Politics meets terroir. The story of Prosecco – Are GI’s just a protectionist racket?

The recent Free Trade Agreement negotiations between Australia and the European Union have again put the issue of Geographical Indications (GIs) in the spotlight. Australia has long demonstrated its understanding of GIs and maintains a clear and rigorous GI protection system for wine. For many years, Australia’s wine sector was a strong advocate for GIs and a strong system to protect the