Terroir 2020 banner
IVES 9 IVES Conference Series 9 Vertical temperature gradient in the canopy provides opportunities to adapt training system in a climate change context

Vertical temperature gradient in the canopy provides opportunities to adapt training system in a climate change context

Abstract

Aims: The aims of this study were (1) to measure the vertical temperature gradient in the vine canopy in parcels with different vineyard floor management practices and (2) to analyze the factors influencing this gradient. The objective was to investigate whether the increase of trunk height could be an adaptation strategy to reduce air temperature in the bunch zone in a context of climate change. 

Methods and Results: The experiment for measuring the vertical temperature gradient has been set up in the Bordeaux area in 2016. Three replicates of four temperature sensors were installed on vine posts inside two adjacent vineyard parcels at different heights above ground: 30 cm, 60 cm, 90 cm and 120 cm. One parcel was managed with cover crop whereas in the other the soil was tilled.

The results of this study reveal an effect of measurement height and soil management modality on bioclimatic indices. The higher temperature sums are reached close to the ground, particularly on the parcel with cover crop. Only a small effect on delaying ripeness has been shown in this study. The increase of trunk height might minimize potential damage of both frost and heat wave events. Soil tilling also allows limiting spring frost risks. 

In order to better understand the explanatory factors impacting the vertical temperature gradients, different climatic factors (average temperature, wind, precipitation, insolation fraction) and soil moisture were studied by using the data of the weather station of Saint-Emilion (Météo-France). A strong effect of soil moisture was shown on maximum temperature gradients. Projections of climate change agree on an increase in air temperature in the future. Assuming the same rainfall patterns, this increase of temperature is likely to reduce soil moisture, and increase vertical gradients in maximum temperature. Taking into account this evolution, the increase of trunk height could be a promising adaptation. 

Conclusion: 

This study investigated the vertical temperature gradient and the driving factors for this gradient. Results show that rather than delaying the maturity, the increased of trunk height could be a solution to limit the negative impacts of frost and heat waves. This study also highlighted the impact of soil management and moisture on this gradient. 

Significance and Impact of the Study: The recent evolution of climate already has an impact on vine development and grape composition and it becomes necessary to implement adaptation strategies. The training system is one of the first potential levers for adaptation, relatively easy to implement. This study provides results on the impact of an increased of trunk height and soil management on temperature in the canopy, particularly in the fruit zone, assuming temperature profiles would not change. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Laure de Rességuier1*, Philippe Pieri1, Romain Pons1, Pierre Boudet1, Théo Petitjean1, Séverine Mary2, Cornelis van Leeuwen1

1EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
2VITINNOV, Bordeaux Sciences Agro, ISVV, 33175 Gradignan Cedex, France

Contact the author

Keywords

Vineyard soil management, vertical temperature gradient, grapevine training system, climate change

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Preliminary studies of zoning applications in Goriška Brda (Collio) winegrowing region, Slovenia

Goriška Brda est la région viticole située le plus à l’ouest de la Slovénie, attenante au Collio d’Italie. Goriška Brda (2020 ha de vignobles) a une longue tradition d’élevage viticole. La proximité de la mer Adriatique (Golfe de Trieste) au sud-ouest et des Alpes Juliennes au nord contribue à un climat caractéristique et unique qui influe sur la croissance et la fertilité de la vigne. La constitution des sols, un climat typique et un relief mouvementé provoquent des différences dans la production du raisin, sa quantité et sa qualité. L’utilisation du zonage ou du microzonage permettraient d’atténuer les influences des facteurs climatiques et du sol sur la production de la vigne ou d’en profiter. Pour évaluer la signification des différents facteurs, nous avons résumé et réuni les modèles de différents auteurs.

Distinguishing of red wines from Northwest China by colour-flavour related physico-chemical indexes

Aim: Northwest China occupies an important position in China’s wine regions due to its superior geographical conditions with dry climate and sufficient sunlight. In this work, we aimed to investigate the physico-chemical colour and flavour characteristics of red wine in Northwest China.

Enological potential of autochtonous grape cultivars from Castilla y León (Spain) to elaborate sparkling wines: polyphenolic and biogenic amines and amino acid composition of base wines

In white wines, Verdejo wine stands out because of its high content in total amino acids. The total content in biogenic amines was low in all wines analyzed and putrescine was the predominant biogenic amine.

A comprehensive and accurate annotation for the grapevine T2T genome 

Addressing the opportunities and challenges of genomics methods in grapevine (Vitis vinifera L.) requires the development of a comprehensive and accurate reference genome and annotation. We aimed to create a new gene annotation for the PN40024 grapevine reference genome by integrating the highly accurate and complete T2T assembly and the manually curated PN40024.v4 annotation. Here, we present a novel workflow to enhance the annotation of the T2T genome by incorporating past community input found in PN40024.v4. The pipeline’s containerization will improve the workflow’s reproducibility and flexibility, facilitating its inclusion as a shared workflow on the Grapedia portal, the grapevine genomics encyclopedia.

Comparative study of qualitative and quantitative characters of grape cultivar ‘Mavrodafni’ (Vitis vinifera L.) grown in different regions of the PDO Mavrodafni Patras

‘Mavrodafni’ (Vitis vinifera L.) is considered one of the oldest grapevine cultivars indigenous to the Greek vineyard, with western Peloponnese being its primary center of cultivation. ‘Renio’ is considered to be either a variant of ‘Mavrodafni’ or an altogether different cultivar. Both ‘Mavrodafni’ and ‘Renio’ can be found in the vineyards of the centers of cultivation, since ‘Renio’ is considered to be more productive compared to ‘Mavrodafni’, and for this reason, it has gradually replaced ‘Mavrodafni’ from cultivation over the course of time. The aim of the present study was to assay the mechanical properties, the polyphenolic content and the antioxidant capacity of skin extracts and must of berries coming from ‘Mavrodafni’ and ‘Renio’, cultivated in the same vineyard as well as in the different regions of cultivation of the PDO Mavrodafni Patras.