Terroir 2020 banner
IVES 9 IVES Conference Series 9 Vertical temperature gradient in the canopy provides opportunities to adapt training system in a climate change context

Vertical temperature gradient in the canopy provides opportunities to adapt training system in a climate change context

Abstract

Aims: The aims of this study were (1) to measure the vertical temperature gradient in the vine canopy in parcels with different vineyard floor management practices and (2) to analyze the factors influencing this gradient. The objective was to investigate whether the increase of trunk height could be an adaptation strategy to reduce air temperature in the bunch zone in a context of climate change. 

Methods and Results: The experiment for measuring the vertical temperature gradient has been set up in the Bordeaux area in 2016. Three replicates of four temperature sensors were installed on vine posts inside two adjacent vineyard parcels at different heights above ground: 30 cm, 60 cm, 90 cm and 120 cm. One parcel was managed with cover crop whereas in the other the soil was tilled.

The results of this study reveal an effect of measurement height and soil management modality on bioclimatic indices. The higher temperature sums are reached close to the ground, particularly on the parcel with cover crop. Only a small effect on delaying ripeness has been shown in this study. The increase of trunk height might minimize potential damage of both frost and heat wave events. Soil tilling also allows limiting spring frost risks. 

In order to better understand the explanatory factors impacting the vertical temperature gradients, different climatic factors (average temperature, wind, precipitation, insolation fraction) and soil moisture were studied by using the data of the weather station of Saint-Emilion (Météo-France). A strong effect of soil moisture was shown on maximum temperature gradients. Projections of climate change agree on an increase in air temperature in the future. Assuming the same rainfall patterns, this increase of temperature is likely to reduce soil moisture, and increase vertical gradients in maximum temperature. Taking into account this evolution, the increase of trunk height could be a promising adaptation. 

Conclusion: 

This study investigated the vertical temperature gradient and the driving factors for this gradient. Results show that rather than delaying the maturity, the increased of trunk height could be a solution to limit the negative impacts of frost and heat waves. This study also highlighted the impact of soil management and moisture on this gradient. 

Significance and Impact of the Study: The recent evolution of climate already has an impact on vine development and grape composition and it becomes necessary to implement adaptation strategies. The training system is one of the first potential levers for adaptation, relatively easy to implement. This study provides results on the impact of an increased of trunk height and soil management on temperature in the canopy, particularly in the fruit zone, assuming temperature profiles would not change. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Laure de Rességuier1*, Philippe Pieri1, Romain Pons1, Pierre Boudet1, Théo Petitjean1, Séverine Mary2, Cornelis van Leeuwen1

1EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
2VITINNOV, Bordeaux Sciences Agro, ISVV, 33175 Gradignan Cedex, France

Contact the author

Keywords

Vineyard soil management, vertical temperature gradient, grapevine training system, climate change

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Influence de l’ensoleillement sur la composante aromatique des baies de raisin

Syrah is a grape with weak aromatic expression. This atypical grape variety as a fruit allows the production of wines of great reputation for which the aromatic particularity plays an important role. The varietal aroma consists of volatile substances directly perceptible by the olfactory mucosa and of aroma precursors, of which the glycosides constitute an important class.

Productivity, quality, and thermal needs of the Piedirosso vine: four years of observations

The effects of temperature on cv Piedirosso, indigenous of the Campania region (South of Italy), were tested in order to study its possible influence on grapevine and to discover how to optimize the qualitative expression

Pests and biodiversity management on a climate change scenario: A practical case

The weather anomalies comparing the 1971-2000 time frame and the last years has showned a dramatic scenario when, in some months, average temperature in above 3ºC and the reduction in precipitation in more than 30%.

Exploring the influence of terroir on the sensorial and aroma profiles of wines – An application to red wines from AOC Corbières

The aromatic profile of a wine is the result of volatile molecules present in grapes (varietal or primary aromas) and those produced during the winemaking process of fermentation (secondary aromas) and during wine aging (tertiary aromas).

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.