Terroir 2020 banner
IVES 9 IVES Conference Series 9 Future projections for chilling and heat forcing for European vineyards

Future projections for chilling and heat forcing for European vineyards

Abstract

Aims: The aims of this study were: (1) to compute recent-past thermal conditions over European vineyards, using state-of-the art bioclimatic indices: chilling portions and growing degree hours; (2) to compute future changes of these thermal conditions using a large ensemble of high-resolution climate models.

Methods and Results: To assess grapevine chilling and forcing conditions, chilling portions (CP) and growing degree-hours (GDH) indices were computed for the baseline period (1989–2005) and for the future RCP4.5 and RCP8.5 scenarios (2041–2060), using several regional-global climate model chains. These calculations also considered model uncertainties and biases. These indices were extracted to the current location of vineyards, in Europe and CP-GDH delimitations were assessed. For the baseline period, higher CP values were found in north-central European regions, while lower values tend to occur on opposed sides of Europe (east-west). Regarding forcing, southern European wine regions currently display the highest GDH values. Future projections depict lower CP in southwestern Europe (-45%) and higher CP (+30%) in Eastern Europe. For GDH, most of Europe is projected to have greater values (up to +30%). 

Conclusions: 

These changes may bring limitations to some of the world’s most important wine producers, such as Spain, Italy and Portugal. Nevertheless, a timely planning of appropriate adaptation measures may aid mitigating future yield/quality losses and improve the future sustainability of the winemaking sector. 

Significance and Impact of the Study: Temperature is a fundamental factor affecting plant growth and development rates. Grapevines have thermal thresholds for adequate growth, physiological development and phenology. Given the future projections for Europe, it is evident that grapevine productivity may be particularly vulnerable to climatic change.  As such, it become imperative to study how future temperature conditions will affect vineyards in Europe, namely the chilling and heat forcing conditions.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Helder Fraga* and João A. Santos

Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal

Contact the author

Keywords

Climate change, chilling, head forcing, viticulture, Europe 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).

Evaluation of Saccharomyces cerevisiae strains from honey by-products by their performance as starters in the wine industry

AIM: Recent studies on yeast ecology of non-oenological niches have highlighted the ability of some Saccharomyces cerevisiae yeasts to ferment grape must [1]

South American Creole grapevines: new varieties identified in the Caravelí Valley (Peru) and their aromatic profile

The valley of Caravelí (Peru) received the first vine plants in colonial times and the tradition of cultivation is maintained thanks to its terroir and artisanal techniques.

Effects of soil water content and environmental conditions on vine water status and gas exchange of Vitis vinifera L. cv. chardonnay

Vine water status has a significant influence on vineyard yield and berry composition (Williams and Matthews, 1990; Williams et al., 1994). It has been hypothesized that the response of plants to soil water deficits may be due to some sort of “root signal” (Davies and Zhang, 1991). This signal probably arises due to the roots sensing a reduction in soil water content or an increase in the mecanical impedance as the soil dries out.

Direct-injection HPLC for simultaneous determination of individual and total polyphenols in red wines: validation of the method

Polyphenols are very important compounds of red wines, serving as essential bioactive components and playing an important role in sensory properties. The determination of individual phenolic compounds in red wine is commonly performed by HPLC analysis, while the total polyphenols are quantified by spectrophotometric methods, usually by the method of absorbance at 280 nm (index of ribéreau-gayon) or the method of index of folin-ciocalteu. In this work, we pioneeringly proposed a new and fast method for simultaneous determination of individual and total polyphenols in red wines by direct-injection HPLC without sample preparation.