Terroir 2020 banner
IVES 9 IVES Conference Series 9 Future projections for chilling and heat forcing for European vineyards

Future projections for chilling and heat forcing for European vineyards

Abstract

Aims: The aims of this study were: (1) to compute recent-past thermal conditions over European vineyards, using state-of-the art bioclimatic indices: chilling portions and growing degree hours; (2) to compute future changes of these thermal conditions using a large ensemble of high-resolution climate models.

Methods and Results: To assess grapevine chilling and forcing conditions, chilling portions (CP) and growing degree-hours (GDH) indices were computed for the baseline period (1989–2005) and for the future RCP4.5 and RCP8.5 scenarios (2041–2060), using several regional-global climate model chains. These calculations also considered model uncertainties and biases. These indices were extracted to the current location of vineyards, in Europe and CP-GDH delimitations were assessed. For the baseline period, higher CP values were found in north-central European regions, while lower values tend to occur on opposed sides of Europe (east-west). Regarding forcing, southern European wine regions currently display the highest GDH values. Future projections depict lower CP in southwestern Europe (-45%) and higher CP (+30%) in Eastern Europe. For GDH, most of Europe is projected to have greater values (up to +30%). 

Conclusions: 

These changes may bring limitations to some of the world’s most important wine producers, such as Spain, Italy and Portugal. Nevertheless, a timely planning of appropriate adaptation measures may aid mitigating future yield/quality losses and improve the future sustainability of the winemaking sector. 

Significance and Impact of the Study: Temperature is a fundamental factor affecting plant growth and development rates. Grapevines have thermal thresholds for adequate growth, physiological development and phenology. Given the future projections for Europe, it is evident that grapevine productivity may be particularly vulnerable to climatic change.  As such, it become imperative to study how future temperature conditions will affect vineyards in Europe, namely the chilling and heat forcing conditions.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Helder Fraga* and João A. Santos

Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal

Contact the author

Keywords

Climate change, chilling, head forcing, viticulture, Europe 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

New disease-resistant grapevine varieties response to drought under a semi-arid climate

In many regions, climate change leads to an increase in air temperature combined with a reduction of rainfall, intensifying climatic demand and water deficits (WD) (Cardell et al. 2019), which in turn may negatively impact grapevine development, yield and grape composition (Santos et al. 2020). In addition, climate change may also increase disease pressure, leading to further yield and quality losses, besides increasing costs due to increased vineyard spraying (Santos et al. 2020) and reducing viticulture acceptability by consumers (Guichard et al. 2017). Adopting new resistant varieties appears as a promising long-term solution to better manage vine protection, but unfortunately little is known regarding their behavior in front of WD.

Beyond colors of rosé wines: impact of origin and winemaking technology on their color, polyphenol and thiol compositions

Rosé wine consumption is rapidly increasing with its market share in France that has grown from 11 % to 32 % in less than 20 years. A recent trend is also to produce rosé wines with lighter colors. Varieties, terroir and technology certainly have an influence on rosé wine colors.

LC-MS based metabolomics discriminates premium from varietal chilean Cabernet Sauvignon cv. Wines

Aim of the study was to investigate the metabolomic differences between Chilean Cabernet Sauvignon wines, divided according to their quality in two main groups: “Varietal” and “Premium”, and to point out metabolites tentative markers of their chemical signature and sensorial quality. Initially, 150 (50 x 3 biological replicates) experimental wines were produced by the same semi-industrial process, which covered 8 different Chilean valleys. The wine classification made by experts, divided the wines into two major groups (“Varietal” and “Premium”) and four subgroups (two for each major group). All the samples were analyzed according to a robust LC-MS based untargeted work-flow (Arapitsas et al 2018), and the proposed minimum reporting standards for chemical analysis of the Metabolomics Standards Initiative (Sumner et al 2007)

Studio preliminare sulla microzonazione Bioclimatica condotto in un’area viticola collinare

La caratterizzazione bioclimatica del territorio rappresenta un elemento sempre più impor­tante per il miglioramento dell’ attività agricola. La conoscenza degli andamenti assunti dai parametri meteorologici puà consentire di individuare le peculiarità dei singoli appezzamenti aziendali, ottimizzando le scelte sia in termini tattici (esecuzione dei più opportuni interventi colturali) che strategici (scelta delle specie o varietà più idonee a valorizzare ciascun am­biente).

Biomass carbon and nitrogen input from cover crops in an irrigated vineyard in Okanagan Valley, Canada

The use of cover crops in vineyards has been encouraged by positive effects on wine grape yield and sensory attributes, and improved soil function. This study examined the efficacy of three alleyway and three undervine cover crop treatments in an organic vineyard in the semiarid Okanagan Valley, Canada in 2021.