Terroir 2020 banner
IVES 9 IVES Conference Series 9 Future projections for chilling and heat forcing for European vineyards

Future projections for chilling and heat forcing for European vineyards

Abstract

Aims: The aims of this study were: (1) to compute recent-past thermal conditions over European vineyards, using state-of-the art bioclimatic indices: chilling portions and growing degree hours; (2) to compute future changes of these thermal conditions using a large ensemble of high-resolution climate models.

Methods and Results: To assess grapevine chilling and forcing conditions, chilling portions (CP) and growing degree-hours (GDH) indices were computed for the baseline period (1989–2005) and for the future RCP4.5 and RCP8.5 scenarios (2041–2060), using several regional-global climate model chains. These calculations also considered model uncertainties and biases. These indices were extracted to the current location of vineyards, in Europe and CP-GDH delimitations were assessed. For the baseline period, higher CP values were found in north-central European regions, while lower values tend to occur on opposed sides of Europe (east-west). Regarding forcing, southern European wine regions currently display the highest GDH values. Future projections depict lower CP in southwestern Europe (-45%) and higher CP (+30%) in Eastern Europe. For GDH, most of Europe is projected to have greater values (up to +30%). 

Conclusions: 

These changes may bring limitations to some of the world’s most important wine producers, such as Spain, Italy and Portugal. Nevertheless, a timely planning of appropriate adaptation measures may aid mitigating future yield/quality losses and improve the future sustainability of the winemaking sector. 

Significance and Impact of the Study: Temperature is a fundamental factor affecting plant growth and development rates. Grapevines have thermal thresholds for adequate growth, physiological development and phenology. Given the future projections for Europe, it is evident that grapevine productivity may be particularly vulnerable to climatic change.  As such, it become imperative to study how future temperature conditions will affect vineyards in Europe, namely the chilling and heat forcing conditions.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Helder Fraga* and João A. Santos

Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal

Contact the author

Keywords

Climate change, chilling, head forcing, viticulture, Europe 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Volatile compounds as indicators of terroir differentiation in Moldovan Feteasca Neagra wines

This study examined volatile compounds in Feteasca Neagra wines from seven vineyards across three PGI regions in Moldova using GC-IMS.

The importance of the physicochemical composition of wine on the score awarded in an official contest

The quality of wine is difficult to define. This is most certainly accredited to everyone´s different perception of quality. Some of the indicators of high-quality wines are color complexity and balance. Color is one of the most crucial attributes of quality, not only for the obvious implications for their perception but also because they are indicators of other aspects related to its aroma and taste.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.