Terroir 2020 banner
IVES 9 IVES Conference Series 9 Future projections for chilling and heat forcing for European vineyards

Future projections for chilling and heat forcing for European vineyards

Abstract

Aims: The aims of this study were: (1) to compute recent-past thermal conditions over European vineyards, using state-of-the art bioclimatic indices: chilling portions and growing degree hours; (2) to compute future changes of these thermal conditions using a large ensemble of high-resolution climate models.

Methods and Results: To assess grapevine chilling and forcing conditions, chilling portions (CP) and growing degree-hours (GDH) indices were computed for the baseline period (1989–2005) and for the future RCP4.5 and RCP8.5 scenarios (2041–2060), using several regional-global climate model chains. These calculations also considered model uncertainties and biases. These indices were extracted to the current location of vineyards, in Europe and CP-GDH delimitations were assessed. For the baseline period, higher CP values were found in north-central European regions, while lower values tend to occur on opposed sides of Europe (east-west). Regarding forcing, southern European wine regions currently display the highest GDH values. Future projections depict lower CP in southwestern Europe (-45%) and higher CP (+30%) in Eastern Europe. For GDH, most of Europe is projected to have greater values (up to +30%). 

Conclusions: 

These changes may bring limitations to some of the world’s most important wine producers, such as Spain, Italy and Portugal. Nevertheless, a timely planning of appropriate adaptation measures may aid mitigating future yield/quality losses and improve the future sustainability of the winemaking sector. 

Significance and Impact of the Study: Temperature is a fundamental factor affecting plant growth and development rates. Grapevines have thermal thresholds for adequate growth, physiological development and phenology. Given the future projections for Europe, it is evident that grapevine productivity may be particularly vulnerable to climatic change.  As such, it become imperative to study how future temperature conditions will affect vineyards in Europe, namely the chilling and heat forcing conditions.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Helder Fraga* and João A. Santos

Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal

Contact the author

Keywords

Climate change, chilling, head forcing, viticulture, Europe 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Mobile device to induce heat-stress on grapevine berries

Studying heat stress response of grapevine berries in the field often relies on weather conditions during the growing season. We constructed a mobile heating device, able to induce controlled heat stress on grapes in vineyards. The heater consisted of six 150 W infrared lamps mounted in a profile frame. Heating power of the lamps could be controlled individually by a control unit consisting of a single board computer and six temperature sensors to reach a pre-set temperature. The heat energy applied to individual berries within a cluster decreases by the squared distance to the heat source, enabling the establishment of temperature profiles within individual clusters. These profiles can be measured by infrared thermography once a steady state has been reached. Radiant flux density received by a berry depending on the distance was calculated based on a view factor and measured lamp surface temperature and resulted to 665 Wm-2 at 7cm. Infrared thermography of the fruit surface was in good agreement with measurements conducted with a thermocouple inserted at epidermis level. In combination with infrared thermography, the presented device offers possibilities for a wide range of applications like phenotyping for heat tolerance in the field to proceed in the understanding of the complex response of plants to heat stress. Sunburn necrosis symptoms were artificially induced with the aid of the device for cv. Bacchus and cv. Sylvaner in the 2020 and 2021 growing season. Threshold temperatures for sunburn induction (LT5030min) were derived from temperature data of single berries and visual sunburn assessment, applying logistic regression. A comparison of threshold temperatures for the occurrence of sunburn necrosis confirmed the higher susceptibility of cv. Bacchus. The lower susceptibility of cv. Sylvaner did not seem to be related to its phenolic composition, rendering a thermoprotective role of berry phenolic compounds unlikely.

Long-term drought resilience of traditional red grapevine varieties from a semi-arid region

In recent decades, the scarcity of water resources in agriculture in certain areas has been aggravated by climate change, which has caused an increase in temperatures, changes in rainfall patterns, as well as an increase in the frequency of extreme phenomena such as droughts and heat waves. Although the vine is considered a drought-tolerant specie, it has to satisfy important water requirements to complete its cycle, which coincides with the hottest and driest months. Achieving sustainable viticulture in this scenario requires high levels of efficiency in the use of water, a scarce resource whose use is expected to be severely restricted in the near future. In this regard, the use of drought-tolerant varieties that are able to maintain grape yield and quality could be an effective strategy to face this change. During three consecutive seasons (2018-2020) the behavior in rainfed regime of 13 traditional red grapevine varieties of the Spain central region was studied. These varieties were cultivated in a collection at Centro de Investigación de la Vid y el Vino de Castilla-La Mancha (IVICAM-IRIAF) located in Tomelloso (Castilla-La Mancha, Spain). Yield components (yield, mean bunch and berry weight, pruning weight), physicochemical parameters of the musts (brix degree, total acidity, pH) and some physiological parameters related with water stress during ripening period (δ13C, δ18O) were analysed. The application of different statistical techniques to the results showed the existence of significant differences between varieties in their response to stressful conditions. A few varieties highlighted for their high ability to adapt to drought, being able to maintain high yields due to their efficiency in the use of water. In addition, it was possible quantify to what extent climate can be a determinant in the δ18O of musts under severe water stress conditions.

Is your juice truly organic? An isotopic approach for certifying organic grape juice

The sustainability and authenticity of grape juice production have gained increasing attention, particularly regarding the environmental impact and health benefits of organic practices.

Twenty-two shades of grey – An analysis of alcohol regulations in the Arab world

This article compares alcohol regulations across 22 Arab League member countries.

Temperature variability inside a wine production area and its effect on vine phenology and grape ripening. An example from the Saint-Emilion-Pomerol

AIM: the aim of this study was to develop a method for fine-scale temperature zoning. The effect of temperature variability on vine phenology and grape composition was assessed in the production area of Saint-Emilion