Terroir 2020 banner
IVES 9 IVES Conference Series 9 How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

Abstract

Aim: Microbial biogeography contributes to regional distinctiveness of agricultural products and is important to determine for quality and marketing of wine products. We evaluated the microbial influence on wine characteristics by considering the microbial diversity of soil, plant, grapes, must and wine in grapegrowing regions across Victoria, Australia. 

Methods and Results: We sampled soils, plant parts, grapes, must and wine across vineyards in Victoria. We extracted DNA for microbial diversity profiling of fungi and bacteria and used gas chromatography- mass spectrometry to separate and identify small molecules in the headspace of wine. At a large scale (~400km), we found that vineyard ecosystems are structured and distinguished by fungal communities, and that fungal communities were the strongest contributor to the aroma of wine. Further studies considered a smaller scale of microbial diversity and investigated the changes in fungal community composition and diversity during the annual growth cycle of the grapevine. We found that fungal ecology is dependent on the grapevine habitat (roots, leaves, flowers/fruit) and developmental stage during the annual growth cycle. The influence of microbial biogeographic patterns decreased during wine fermentation as the fungal populations were dominated by Saccharomyces spp. yeasts. Further investigation of the strain diversity of Saccharomyces cerevisiae showed that this yeast can determine geographic patterns at a small scale and determines regional distinctiveness to influence wine characteristics within a single region. 

Conclusions:

Our results show that microbial distribution patterns seen in vineyards in Europe, North America and New Zealand are also observed in Australia, but the composition of yeasts may be distinct. The ability to define a region based on microbial diversity and fermentative yeasts may assist the industry in more closely defining sub-regions in Australia.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Di (Echo) Liu1, Pangzhen Zhang1, Qinglin Chen1, Jean-Luc Legras2, Deli Chen1, Kate Howell1*

1School of Agriculture and Food, University of Melbourne, Parkville 3010 Australia
2UMR SPO, INRAE, Montpellier France

Contact the author

Keywords

Fungal ecology, yeast, wine aroma 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Applying artificial intelligence for improving grape yield estimation: A case study of wine and table grapes in South Africa

Accurate grape yield estimation is essential for effective vineyard management, crop planning, and resource allocation. Traditional methods often involve time-consuming and labour-intensive processes, which may introduce errors due to the large size and inherent spatial variability of the vineyard blocks.

Pure wine vs natural wine

S’il n’existe pas de réglementation officielle, la démarche des vins naturels prône un retour aux pratiques dites ancestrales préconisant notamment un mode d’élaboration des vins utilisant le moins d’intrants possible. Le seul autorisé reste l’anhydride sulfureux (SO2) à des doses quatre à cinq fois moins importantes que pour les vins dits conventionnels. Ce désir de renouer avec

Correction de la teneur en alcool des vins par évaporation partielle sous vide en cours de fermentation alcoolique

Climate change has become a reality that is becoming more and more apparent every day, with changes in the physico-chemical composition of grapes and an increase in the alcohol content of finished wines. These higher alcoholic degrees are not without consequences for the success of alcoholic and malolactic fermentation. Correcting the alcohol content (-20% of the initial alcoholic strength) is also part of an approach designed to meet consumer expectations for healthier, lighter or lower-alcohol wines (9 to 13% vol.). Correcting the alcohol content of wines also rebalances the mouthfeel by reducing the alcohol’s burn.

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.