Terroir 2020 banner
IVES 9 IVES Conference Series 9 How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

Abstract

Aim: Microbial biogeography contributes to regional distinctiveness of agricultural products and is important to determine for quality and marketing of wine products. We evaluated the microbial influence on wine characteristics by considering the microbial diversity of soil, plant, grapes, must and wine in grapegrowing regions across Victoria, Australia. 

Methods and Results: We sampled soils, plant parts, grapes, must and wine across vineyards in Victoria. We extracted DNA for microbial diversity profiling of fungi and bacteria and used gas chromatography- mass spectrometry to separate and identify small molecules in the headspace of wine. At a large scale (~400km), we found that vineyard ecosystems are structured and distinguished by fungal communities, and that fungal communities were the strongest contributor to the aroma of wine. Further studies considered a smaller scale of microbial diversity and investigated the changes in fungal community composition and diversity during the annual growth cycle of the grapevine. We found that fungal ecology is dependent on the grapevine habitat (roots, leaves, flowers/fruit) and developmental stage during the annual growth cycle. The influence of microbial biogeographic patterns decreased during wine fermentation as the fungal populations were dominated by Saccharomyces spp. yeasts. Further investigation of the strain diversity of Saccharomyces cerevisiae showed that this yeast can determine geographic patterns at a small scale and determines regional distinctiveness to influence wine characteristics within a single region. 

Conclusions:

Our results show that microbial distribution patterns seen in vineyards in Europe, North America and New Zealand are also observed in Australia, but the composition of yeasts may be distinct. The ability to define a region based on microbial diversity and fermentative yeasts may assist the industry in more closely defining sub-regions in Australia.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Di (Echo) Liu1, Pangzhen Zhang1, Qinglin Chen1, Jean-Luc Legras2, Deli Chen1, Kate Howell1*

1School of Agriculture and Food, University of Melbourne, Parkville 3010 Australia
2UMR SPO, INRAE, Montpellier France

Contact the author

Keywords

Fungal ecology, yeast, wine aroma 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Biochemical responses of crimson seedless (Vitis vinifera) grapevines to altered micro climatic conditions and different water treatments in the Breede River Valley of South Africa

The South African Table grape industry has to expand to new markets with high quality niche products, but limited water availability threatens sustainable production. To overcome this challenge and to obtain high-quality products for the new markets, require constant technological advancement. Currently, limited available scientific information about growth balances and physiology and especially grape quality parameters, hinders technological advancement and thus efficient regulatory management of the morphological, chemical, and pathological status of table grapes, especially in response to abiotic factors.

Chemical and sensory evolution of total and partial dealcoholized wine in a can

In recent years, wine consumption has been evolving towards new trends. On the one hand, awareness of health and responsible consumption has been growing, and with it, the demand for wines with lower or without alcohol content [1].

Influence of soil type on juice quality in a vineyard from DO Ca Rioja

Soil plays an important role in wine quality, especially its water holding capacity because it affects the balance between vigour and grape yield. The aim of this work was to study the influence of different soil types on the must quality in a vineyard at DO Ca Rioja

Alternative methods to evaluate the pinking susceptibility of white wines: derivative spectroscopy and ciel*a*b* colour analysis

Pinking describes the appearance of a salmon-red blush in white bottled wines produced exclusively from white grape varieties. It is understood as an undesirable chromatic phenomenon by both wine consumers and the industry. Nowadays, there are no treatments to fully reverse pinking once it occurs. Partial reversion has been shown after exposure of pinked wine to ultraviolet (UV) light.