Terroir 2020 banner
IVES 9 IVES Conference Series 9 How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

Abstract

Aim: Microbial biogeography contributes to regional distinctiveness of agricultural products and is important to determine for quality and marketing of wine products. We evaluated the microbial influence on wine characteristics by considering the microbial diversity of soil, plant, grapes, must and wine in grapegrowing regions across Victoria, Australia. 

Methods and Results: We sampled soils, plant parts, grapes, must and wine across vineyards in Victoria. We extracted DNA for microbial diversity profiling of fungi and bacteria and used gas chromatography- mass spectrometry to separate and identify small molecules in the headspace of wine. At a large scale (~400km), we found that vineyard ecosystems are structured and distinguished by fungal communities, and that fungal communities were the strongest contributor to the aroma of wine. Further studies considered a smaller scale of microbial diversity and investigated the changes in fungal community composition and diversity during the annual growth cycle of the grapevine. We found that fungal ecology is dependent on the grapevine habitat (roots, leaves, flowers/fruit) and developmental stage during the annual growth cycle. The influence of microbial biogeographic patterns decreased during wine fermentation as the fungal populations were dominated by Saccharomyces spp. yeasts. Further investigation of the strain diversity of Saccharomyces cerevisiae showed that this yeast can determine geographic patterns at a small scale and determines regional distinctiveness to influence wine characteristics within a single region. 

Conclusions:

Our results show that microbial distribution patterns seen in vineyards in Europe, North America and New Zealand are also observed in Australia, but the composition of yeasts may be distinct. The ability to define a region based on microbial diversity and fermentative yeasts may assist the industry in more closely defining sub-regions in Australia.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Di (Echo) Liu1, Pangzhen Zhang1, Qinglin Chen1, Jean-Luc Legras2, Deli Chen1, Kate Howell1*

1School of Agriculture and Food, University of Melbourne, Parkville 3010 Australia
2UMR SPO, INRAE, Montpellier France

Contact the author

Keywords

Fungal ecology, yeast, wine aroma 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Monferace a new “old style” for Grignolino wine, an autochthonous Italian variety: unity in diversity

Monferace project is born from an idea of 12 winegrowers willing to create a new “old style” Grignolino wine and inspired byancient winemaking techniques of this variety (1). Monferace wine is produced with 100% Grignolino grapes after 40 months of ageing, of which 24 in wooden barrels of different volumes. Grignolino is an autochthonous Italian variety cultivated in Piedmont (north-west Italy), recently indicated as a “nephew” of the famous Nebbiolo (2) and is used to produce three different DOC wines. The Monferace Grignolino is cultivated in the geographical area identified in the Aleramic Monferrato, defined by the Po and Tanaro rivers, in the heart of Piedmont and the produced wine is characterized by a high content of tannins, marked when young, that evolve over the years. Its color is generally slight ruby red and garnet red with orange highlights with ageing.

Soil and nutritional survey of Greek vineyards from the prefecture of Macedonia, Northern Greece, and from the island of Santorini

Vitis vinifera L. is one of the most important cultures for the soil and
climate conditions of Northern Greece and Santorini. However, very little information is provided with regard to its nutritional requirements and critical levels of nutrient deficiencies and toxicities. The aim of this study was to provide an integrated nutritional survey for the Greek conditions of wine and table varieties.

The impact of acetaldehyde on phenolic evolution of a free-SO2 red wine

Some wine producers, in good years, can produce free-SO2 red wines and decide to add the minimum amount of sulphur dioxide only at bottling. To manage this addition

Il vino nobile di Montepulciano

C’è grande attenzione al rapporto tra zonazione e marketing. Mi sembra però che ci sia anco­ra oggi un salto fra le pratiche di analisi del terreno e di deterrninazione di quello che potremo definire “cru” e quello che può essere la sua utilizzazione rispetto ai consumatori finali.

Development of bioprospecting tools for oenological applications

Wine is the result of a complex biochemical process. From a microbiological point of view, the grape berry is characterised by a heterogeneous microbiota composed of different microorganisms (yeasts, bacteria and filamentous fungi) which will play a predominant role in the quality of the final product. At this level, yeasts play a predominant role in the chemistry of wine, as they