Terroir 2020 banner
IVES 9 IVES Conference Series 9 Relationships between vineyard soil physiochemical properties and under-vine soil cover as potential drivers of terroir in the Barossa

Relationships between vineyard soil physiochemical properties and under-vine soil cover as potential drivers of terroir in the Barossa

Abstract

Aims: Soils are an intrinsic feature of the landscape and have influenced culturally and economically important terroir delineation in many wine-producing regions of the world. Soil physiochemical properties govern a wide array of ecosystem services, and can therefore affect grapevine health and fruit development. These physiochemical properties can reflect a combination of factors, including geology and environmental conditions, as well as soil management. In order to evaluate to what extent each of these factors contribute to the soil-driven aspect of terroir, this study examines soil properties and under-vine soil cover of twenty-four vineyard sites located in six sub-regions within the Barossa Geographical Indication (GI) Zone in South Australia. The aims of this study are to investigate relationships between soil properties and soil management as potential features that shape sub-regional variation in terroir characteristics that may eventuate in the development of smaller, distinctive sub-regional GI’s within the Barossa GI Zone.

Methods and Results: Soil samples were collected from the under-vine rows of twenty-four vineyard sites, with four sites located in each of the six Barossa sub-regions of Central Grounds, Southern Grounds, Northern Grounds, Western Ridge, Eastern Ridge and Eden Valley. Soil physiochemical properties such as texture (% sand, % silt, and % clay), total carbon (TC), total nitrogen (TN), plant-available (Colwell) phosphorus (P), pH, electrical conductivity (EC), and gravimetric water content (GWC) were measured at each site. Under-vine soil cover at each vineyard site was then assessed by using 1m2 quadrat surveys to categorise the under-vine zone based on the dominant plant species (perennial grasses or broadleaf weeds) or soil cover (bare soil or mulch). Results indicated that the Eden Valley had lower P than the Eastern Ridge and lower % clay than the Eastern Ridge and Central Grounds. The other measured soil properties were not different between the sub-regions. Under-vine floor cover did not play a significant role in shaping the measured soil properties in this study, instead it appears that soil texture was the main driver that explains these relationships. 

Conclusions:

Sub-regional variation in soil properties in the Barossa GI Zone was most strongly influenced by soil texture, which was variable at the sub-regional level in most of the sub-regions, however differences were found between the Eden Valley, Central Grounds and Eastern Ridge with the latter two sub-regions being characterised by soils with higher clay contents. Plant-available P was lowest in the Eden Valley, which could be explained by the higher sand content and therefore higher P leachability of soils in this sub-region. Under-vine soil cover did not have any effects on soil physiochemical properties between the vineyard sites, also likely because of the variability of soil texture between sites. The next steps in this study are to characterise the structure of soil microbial communities (i.e. microbiomes) in these six sub-regions to gain insight on how soil biogeography changes over an Australian wine-producing landscape. 

Significance and Impact of the Study: This study provides insights as to the main drivers of soil sub-regional variation in the Barossa GI Zone and indicates that soils are highly variable even at the sub-regional level. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Merek Kesser*, Timothy Cavagnaro, Roberta De Bei and Cassandra Collins

School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia

Contact the author

Keywords

Terroir, sub-regions, soil physiochemistry, under-vine soil cover

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

In vitro regeneration of grapevine cv. Aglianico via somatic embryogenesis: preliminary studies for next genome editing applications  

Italy is a rich hub of viticultural biodiversity harboring hundreds of indigenous grape varieties that have adapted over centuries to the diverse climatic and geographic conditions of its regions. Preserving this biodiversity is essential for maintaining a diversified genetic pool, crucial for addressing future challenges such as climate change and emerging plant diseases. Rising temperatures, precipitation pattern variations, and extreme weather events can affect grape ripening, crop quality, and contribute to disease development. Integrated disease management necessitates exploration of novel strategies. Biotechnologies emerge as a significant player in tackling modern viticulture challenges.

Towards 2D mapping of gaseous ethanol in the headspace of wine glasses by infrared laser spectrometry

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the chemical space perceived by the consumer in the glass headspace.

Health space in vine spa in the world

This elaboration presents vine spa has precious contribution of social development health and well being in culture of wine regions. The majority of the vine-spas in the world draw raw materials from the vineyard; both for cosmetics treatments and for dishes in their restaurants. Vitis vinifera vine provides fresh grapes for dishes and massages, seeds and oil from the seeds, as well as the leaves, and its extracts, and above all the wine.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

Effect of power ultrasound treatment on free and glycosidically-bound volatile compounds and the sensorial profile of red wines

AIM Aiming to explore the possibility of shortening red winemaking maceration times (1,2), this study presents the effect of the application of high-power ultrasounds to crushed grapes, at winery-scale, on the content of varietal volatile compounds (free and glycosidically-bound) in musts and on the overall aroma of wines.