Terroir 2020 banner
IVES 9 IVES Conference Series 9 Relationships between vineyard soil physiochemical properties and under-vine soil cover as potential drivers of terroir in the Barossa

Relationships between vineyard soil physiochemical properties and under-vine soil cover as potential drivers of terroir in the Barossa

Abstract

Aims: Soils are an intrinsic feature of the landscape and have influenced culturally and economically important terroir delineation in many wine-producing regions of the world. Soil physiochemical properties govern a wide array of ecosystem services, and can therefore affect grapevine health and fruit development. These physiochemical properties can reflect a combination of factors, including geology and environmental conditions, as well as soil management. In order to evaluate to what extent each of these factors contribute to the soil-driven aspect of terroir, this study examines soil properties and under-vine soil cover of twenty-four vineyard sites located in six sub-regions within the Barossa Geographical Indication (GI) Zone in South Australia. The aims of this study are to investigate relationships between soil properties and soil management as potential features that shape sub-regional variation in terroir characteristics that may eventuate in the development of smaller, distinctive sub-regional GI’s within the Barossa GI Zone.

Methods and Results: Soil samples were collected from the under-vine rows of twenty-four vineyard sites, with four sites located in each of the six Barossa sub-regions of Central Grounds, Southern Grounds, Northern Grounds, Western Ridge, Eastern Ridge and Eden Valley. Soil physiochemical properties such as texture (% sand, % silt, and % clay), total carbon (TC), total nitrogen (TN), plant-available (Colwell) phosphorus (P), pH, electrical conductivity (EC), and gravimetric water content (GWC) were measured at each site. Under-vine soil cover at each vineyard site was then assessed by using 1m2 quadrat surveys to categorise the under-vine zone based on the dominant plant species (perennial grasses or broadleaf weeds) or soil cover (bare soil or mulch). Results indicated that the Eden Valley had lower P than the Eastern Ridge and lower % clay than the Eastern Ridge and Central Grounds. The other measured soil properties were not different between the sub-regions. Under-vine floor cover did not play a significant role in shaping the measured soil properties in this study, instead it appears that soil texture was the main driver that explains these relationships. 

Conclusions:

Sub-regional variation in soil properties in the Barossa GI Zone was most strongly influenced by soil texture, which was variable at the sub-regional level in most of the sub-regions, however differences were found between the Eden Valley, Central Grounds and Eastern Ridge with the latter two sub-regions being characterised by soils with higher clay contents. Plant-available P was lowest in the Eden Valley, which could be explained by the higher sand content and therefore higher P leachability of soils in this sub-region. Under-vine soil cover did not have any effects on soil physiochemical properties between the vineyard sites, also likely because of the variability of soil texture between sites. The next steps in this study are to characterise the structure of soil microbial communities (i.e. microbiomes) in these six sub-regions to gain insight on how soil biogeography changes over an Australian wine-producing landscape. 

Significance and Impact of the Study: This study provides insights as to the main drivers of soil sub-regional variation in the Barossa GI Zone and indicates that soils are highly variable even at the sub-regional level. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Merek Kesser*, Timothy Cavagnaro, Roberta De Bei and Cassandra Collins

School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia

Contact the author

Keywords

Terroir, sub-regions, soil physiochemistry, under-vine soil cover

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Olfactometric and sensory study of red wines subjected to ultrasound or microwaves during their elaboration

The effect that some extraction techniques, such as ultrasound (Cacciola, Batllò, Ferraretto, Vincenzi, & Celotti, 2013; Povey & McClements, 1988) or microwaves (Carew, Close, & Dambergs, 2015; Carew, Gill, Close, & Dambergs, 2014) produce on the aroma of red wines, when applied to processes of extractive nature, such as pre-fermentative maceration or ageing with oak chips (Spanish oak – Quercus pyrenaica and French oak – Quercus robur) has been studied. The volatile profile was determined by means of gas chromatography coupled with olfactometric and mass spectrometric detection. A sensory analysis was also carried out. No indications were found to show that the pre-fermentative treatment with microwaves or ultrasound modified the sensory profile of the wines whereas the application of such energies during the ageing phase showed some positive trends at sensory level.

Application of non-Saccharomyces yeasts in peculiar winemaking, sparkling and sweet wines: biological acidification, prise de mousse, aroma profile. Two cases of study

In this video recording of the IVES science meeting 2025, Raffaele Guzzon (Fondazione Edmund Mach, Centro di Trasferimento Tecnologico, San Michele all’Adige (TN), Italy) speaks about the application of non-Saccharomyces yeasts in peculiar winemaking, sparkling and sweet wines (biological acidification, prise de mousse, aroma profile). This presentation is based on an original article accessible for free on OENO One.

Impact of climate change on the viticultural climate of the Protected Designation of Origin “Jumilla” (SE Spain)

Protected Designation of Origin “Jumilla” (PDO Jumilla) is located in the Spanish provinces of Albacete and Murcia, in the South-eastern part of the Iberian Peninsula, where most of the models predict a severe impact of climate change in next decades. PDO Jumilla covers an area of 247,054 hectares, of which more than 22,000 hectares

Impact of grape ripening and post-harvest withering on must composition and fermentation kinetics

Postharvest dehydration is a widely employed technique in winemaking to enhance sugar concentration and secondary metabolites from grapes. Different grape varieties exhibit varying responses in terms of dehydration rate and the resulting chemical composition.

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.