Terroir 2020 banner
IVES 9 IVES Conference Series 9 Projections of vine phenology and grape composition of Tempranillo variety In Rioja DOCa (Spain) under climate change

Projections of vine phenology and grape composition of Tempranillo variety In Rioja DOCa (Spain) under climate change

Abstract

Aims: Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenological events and in the length of the growing season, which may affect grape quality. The aim of this research was to analyze the projected changes in vine phenology and on grape composition of the Tempranillo variety in Rioja DOCa under different climate change scenarios.

Methods and Results: Three zones of Rioja DOCa, located at different elevations and with different climatic conditions were compared. For the analysis, vine phenology referred to flowers separated and veraison (stage H and M, according to Baillod and Baggiolini) and maturity defined based on the date at which 13ᵒ were reached, were analysed in the three zones for the period between 2008 and 2018. Grape composition at maturity, including variables related to acidity and polyphenol content was also evaluated for the same period. The weather characteristics for the places where the plots were located were also analysed using data of different meteorological stations belonging to the Rioja government. The thermal requirements to reach each phenological stage were evaluated and expressed as the GDD accumulated from DOI=60, which were considered to predict the changes under future climatic conditions. The analysis was done for the future conditions predicted by 2050 and 2070 under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5-, which were simulated based on an ensemble of 10 models.

An advance of the phenological stages was predicted, higher for veraison and maturity than for floraison. The advance of the stage H, M and maturity for the three zones by 2050 could be up to 5, 8, and 12 days, respectively under the RCP4.5 emission trajectory, and up to 8, 12 and 15, respectively under the RCP8.5 emission trajectory. The predicted advances indicate that the differences in timing that already exists between zones will be maintained or even increase, which will imply reaching maturity in the second half of August in the warmer area and in earlier September in the coolest one. Grape acidity could suffer a decrease with increasing temperature, while anthocyanins could decrease by the increase of temperature but increase due to the higher expected water deficit, and these changes could differ among zones. In addition, due to the advance in the phenology a decoupling between anthocyanins and sugars could result, which suggest the need of applying new management techniques to maintain grape quality.

Conclusion: 

The Tempranillo variety cultivated in Rioja DO may suffer significant changes in phenology and in grape composition under climate change, affected both by increasing temperatures and higher water deficits. However, differences were found between zones within the Rioja DOCa.

Significance and Impact of the Study: The study allowed quantifying the differences in the impact that climate change may produce in phenology and in grape composition in zones with different climatic conditions, which may be taken under consideration to identify potential areas in which the Tempranillo variety may suffer lower impacts under climate change.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

María Concepción Ramos1*, Fernando Martínez de Toda2

1Department of Environment and Soil Sciences-Agrotecnio, University of Lleida, Spain
2ICVV- Institute of Grapevine and Wine Science (University of La Rioja, CSIC, Government of La Rioja), Logroño, Spain

Contact the author

Keywords

Acidity, anthocyanins, berry weight, polyphenols, soil characteristics, available water content

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Similarities among wine aromas and landscape scents around the vineyard in five Mediterranean sites

We compared 68 aroma compounds in wines from 5 vineyards in order to see similarities among the wine aroma and the scent of some of the main native plants from the respective vineyards.

Understanding the complexity of grapevine winter physiology in the face of changing climate

The vast majority of our understanding of grapevine physiology is focused on the processes that occur during the growing season. Though not obvious, winter physiological changes are dynamic and complex, and have great influence on the survival and phenology of grapevines. In cool and cold climates, winter temperatures are a constant threat to vine survival. Additionally, as climate changes, grapevine production is moving toward more traditionally cool and cold climates, either latitudinal or altitudinal in location. Our research focuses on understanding how grapevines navigate winter physiological changes and how temperature impacts aspects of cold hardiness and dormancy. Through these studies, we have gained keen insight into the connections between winter temperature, maximum cold haridness, and budbreak phenology, that can be used to develop prediction models for viticulture in a changing climate.

Exploring the physico-chemical modification of grape seed extracts to improve their clarifying effect in red wine

During winemaking, some byproducts are obtained, such as grape pomace, which represent 13% of winery byproducts.

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Synthesis of the contribution of the Giesco (group of international experts of vitivinicultural systems for cooperation) to the study of terroirs

Since 1998, the GiESCO (previously named GESCO: Groupe d’Etude des Systèmes de COnduite de la vigne) has provided the scientific community with relevant contributions to the study of terroirs. Here is a synthesis of the main terroir-related fields and the major ideas the GiESCO has developed: Basic Terroir Unit and climate, Vine Ecophysiology and microclimate – moderate drought, Vineyard heterogeneity and new technologies, Viticultural Terroir Unit and canopy management, Terroir – Territory and man.