Terroir 2020 banner
IVES 9 IVES Conference Series 9 Projections of vine phenology and grape composition of Tempranillo variety In Rioja DOCa (Spain) under climate change

Projections of vine phenology and grape composition of Tempranillo variety In Rioja DOCa (Spain) under climate change

Abstract

Aims: Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenological events and in the length of the growing season, which may affect grape quality. The aim of this research was to analyze the projected changes in vine phenology and on grape composition of the Tempranillo variety in Rioja DOCa under different climate change scenarios.

Methods and Results: Three zones of Rioja DOCa, located at different elevations and with different climatic conditions were compared. For the analysis, vine phenology referred to flowers separated and veraison (stage H and M, according to Baillod and Baggiolini) and maturity defined based on the date at which 13ᵒ were reached, were analysed in the three zones for the period between 2008 and 2018. Grape composition at maturity, including variables related to acidity and polyphenol content was also evaluated for the same period. The weather characteristics for the places where the plots were located were also analysed using data of different meteorological stations belonging to the Rioja government. The thermal requirements to reach each phenological stage were evaluated and expressed as the GDD accumulated from DOI=60, which were considered to predict the changes under future climatic conditions. The analysis was done for the future conditions predicted by 2050 and 2070 under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5-, which were simulated based on an ensemble of 10 models.

An advance of the phenological stages was predicted, higher for veraison and maturity than for floraison. The advance of the stage H, M and maturity for the three zones by 2050 could be up to 5, 8, and 12 days, respectively under the RCP4.5 emission trajectory, and up to 8, 12 and 15, respectively under the RCP8.5 emission trajectory. The predicted advances indicate that the differences in timing that already exists between zones will be maintained or even increase, which will imply reaching maturity in the second half of August in the warmer area and in earlier September in the coolest one. Grape acidity could suffer a decrease with increasing temperature, while anthocyanins could decrease by the increase of temperature but increase due to the higher expected water deficit, and these changes could differ among zones. In addition, due to the advance in the phenology a decoupling between anthocyanins and sugars could result, which suggest the need of applying new management techniques to maintain grape quality.

Conclusion: 

The Tempranillo variety cultivated in Rioja DO may suffer significant changes in phenology and in grape composition under climate change, affected both by increasing temperatures and higher water deficits. However, differences were found between zones within the Rioja DOCa.

Significance and Impact of the Study: The study allowed quantifying the differences in the impact that climate change may produce in phenology and in grape composition in zones with different climatic conditions, which may be taken under consideration to identify potential areas in which the Tempranillo variety may suffer lower impacts under climate change.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

María Concepción Ramos1*, Fernando Martínez de Toda2

1Department of Environment and Soil Sciences-Agrotecnio, University of Lleida, Spain
2ICVV- Institute of Grapevine and Wine Science (University of La Rioja, CSIC, Government of La Rioja), Logroño, Spain

Contact the author

Keywords

Acidity, anthocyanins, berry weight, polyphenols, soil characteristics, available water content

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;

Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Climate is a key variable for grapevine development and berry ripening processes. At mesoscale level, climate spatial variations are often determined empirically, as weather station networks are generally not dense enough to account for local climate variations.

Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

The use of selected cultures of the species Lactiplantibacillus plantarum in Oenology has grown in prominence in recent years. While initial applications of this species centred very much around malolactic fermentation (MLF), there is strong evidence to show that certain strains can be harnessed for their bio-protective effects. Unwanted spontaneous MLF during alcoholic fermentation (AF), driven by rogue Oenococcus oeni, is a winemaking deviation that is very difficult to manage when it occurs. This work set out to determine the efficacy of one particular strain of Lactiplantibacillus plantarum(Viniflora® NoVA™ Protect), against this problem in Cabernet Sauvignon must. The work was carried out at commercial scale and in a winery environment and compared the bio-protective culture with the more traditional approach of reducing must pH by the addition of tartaric acid. The combination of both was also investigated. The concentration of both Oenococcus oeni and Lactiplantibacillus plantarum was determined using qPCR. The adventitious Oenococcus oeni showed the most growth during AF in the control wine, whereas in the wines treated with Lactiplantibacillus plantarum a bacteriostatic effect against this species was observed. This effect was comparable to the wines treated with tartaric acid. This has particular commercial relevance for controlling the flora in musts with high pH, or when the addition of tartaric acid is either not permitted or is prohibitive for other reasons.

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

Impact of environmental conditions in vscs production during wine fermentation by Saccharomyces cerevisiae

The aroma of wine is one of the most important determinants of quality as it strongly influences the consumer’s acceptance or rejection. Among the thousands of molecules comprising the wine aroma, sulfur-containing compounds can be considered as a “double-edged sword”: some of them, deriving from varietal precursors provide fruity pleasant aromas, while other ones, produced by yeast metabolism are related to “unpleasant” aromas