Terroir 2020 banner
IVES 9 IVES Conference Series 9 Agroclimatic characterisation of the Portugese wine denominations of origin using a compound index

Agroclimatic characterisation of the Portugese wine denominations of origin using a compound index

Abstract

Aims: This study aims to: (1) characterize the agroclimatic conditions of the Portuguese Denominations of Origin, using a compound index that combines thermal and soil water balance conditions and a high-resolution climatic dataset (~1 km spatial resolution); (2) categorize the main grapevine varieties as a function of this compound index.

Methods and Results: The 50 protected denominations of origin (DOs)/ sub-regions in mainland Portugal are considered in the analysis. The Huglin and dryness indices are computed based on a high-resolution dataset over mainland Portugal and for a baseline period (1981–2015). Principal component analysis is applied to the time-mean spatial patterns of the aforementioned bioclimatic indices and only over the planted vineyard cover areas in each region. This methodology enables the identification of a compound index that can be used to assess the agroclimatic conditions of a given DO / sub-region. Moreover, a set of 44 main grapevine varieties in Portugal is used for assessing their growth conditions. A categorization of these varieties in terms of their current agroclimatic growing conditions is also analyzed based on GIS methods.

Conclusions: 

The present study highlights a wide diversity of agroclimatic conditions in the Portuguese DOs. This heterogeneity contributes to a vast number of different terroirs in the country, which is an important added-value for the winemaking sector, particularly under the ongoing climate change. Furthermore, it is shown that the main grapevine varieties in Portugal are also growing in very different agroclimatic conditions, which enables their categorization based on their current growing bioclimatic conditions.

Significance and Impact of the Study: The results of this study are not only useful for a detailed characterization of the agroclimatic conditions of the Portuguese DO, where there is a considerable lack of meteorological observations, but are also of utmost relevance when planning climate change adaptation measures and risk reduction strategies in the Portuguese winemaking sector. The variety-specific information may also be very helpful for varietal selection, mostly because information of climatic suitability for most of the Portuguese grapevine varieties is still incipient.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

João A. Santos1*, Mónica Santos1, André Fonseca1, Helder Fraga1, Gregory Jones2

1Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal
2Center for Wine Education, Linfield College, McMinnville, Oregon

Contact the author

Keywords

Denominations of Origin, Huglin Index, Dryness Index, Compound Index, bioclimatic zoning, Portugal

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

The crunchy texture of table grapes is one of the key quality parameters during production. This varies from cultivar to cultivar, stage of harvest and vineyard performance. Cell wall properties are key drivers of berry quality (e.g., pericarp firmness and intactness) at harvest and beyond. Common practise amongst producers is to continuously monitor firmness by evaluating pericarp appearance of cross-sectioned berries prior to harvest. These qualitative methods can be quite arbitrary and imprecise in their execution, but more quantitative, yet simple and high-throughput methods to evaluate these cell wall polymers are not yet readily available.

Monitoring of grapevine stem potentials with an embedded microtensiometer

Vine water status is a crucial determinant of vine growth, productivity, fruit composition and terroir or wine style; therefore, regulating water stress is of great importance. Since vine water status depends on both soil moisture and aerial environment and is very temporally dynamic, direct measurement of vine water potential is highly preferable. Current methods only provide limited data. To regulate vine water status it is critical to monitor vine water status to be able to: (1) measure vine water status to predict the effect of water stress on the overall vineyard performance and fruit quality and optimize harvest management and wine-making (2) properly regulate the water status to impose for a desired fruit quality or style (3) determine if water management has reached the desired stress level.

Evaluation of the agronomic performance of cvs. Syrah and tempranillo when grafted on a new series of rootstocks developed in spain

The choice of an adequate rootstock is a key tool to improve the performance of grapevine varieties in different ‘terroirs’, as rootstocks confer adaptation to soil characteristics

Study of the vine performance and the wine composition of Tannat on the terroir of Colonia del Sacramento – Uruguay

Grape-growing terroirs were defined according to the method proposed by Falcetti and Asselin (1996) near of Colonia de Sacramento, a city of Uruguay situated on the left of the “Rio de la Plata”.

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity.