Terroir 2020 banner
IVES 9 IVES Conference Series 9 Simulating the impact of climate change on viticultural systems in various European vineyards

Simulating the impact of climate change on viticultural systems in various European vineyards

Abstract

Aim: Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007, 2015; van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010). They vary from short-term impacts on wine quality and style, to long-term issues such as varietal suitability and the economic sustainability of traditional wine growing regions (Schultz and Jones 2010; Quénol, 2014). Within the context of a global changing climate, we have decided to develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. 

Methods and Results: Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), present a generic modeling environment for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability, etc.) as well as production strategies and adaptation rules according to climate change scenarios.Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Agents are distinguished according to their objectives: “Supervisors” Agent plays an overseeing role in the model, “Winegrower” Agents aim to grow grapes and produce wine that meets precise specifications according to their end-product goals and “Vine” Agents are grape production entities. The relationships between these three types of agents determine the production strategies adopted by the winegrowers. According to two scenarios of climate change, several prospective simulations have been implemented, in the context of the European ADVICLIM project (http://www.adviclim.eu/), to compare adaptation strategies at European scale. Through different experiments in France, United Kingdom, Romania, Germany and Spain, the SEVE model provides potential adaptation strategies tendencies from short-term to long-term adjustment. Simulation results underline that small-scale variability is strongly linked with vine phenology and ripeness potential. Over the next century, winegrowers will likely be confronted with increasing temperatures and changing rainfall patterns that will have important impacts on agronomic practices (increase/decrease of fungicide treatments or soil management practices depending on site and scenario) and adaptation strategies (management of frost risk or heat waves, plant material adaptation, change in vine training system, etc.).

Conclusion:

The modelling approach presented in this paper addresses the impact of environmental conditions and constraints on vine phenology and management strategies. The SEVE model is able to reproduce the dynamics of vine growing and agronomic choices and practices according to climate variability. In the context of climate change, such a dynamic model will help to better assess potential impacts on vine behaviour and to identify potential adaptation pathways.

Significance of and Impact of the Study: As climate is a key factor of grapevine growth and fruit ripening, winegrowers are constantly adjusting their plot- to farm-level decision-making in response to climate variations. With a global changing climate, winegrowers are therefore required to continue developing adaptation strategies that deal with both short- and long-term climate changes, while likewise accounting for local vulnerability to avoid mal-adaptation. Based on a modelling approach, this study aims to identify and prioritise some rational adaptation strategies at local vineyard scales.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Cyril Tissot1*, Mathias Rouan1, Théo Petitjean2, Laurence David1, Renan Le Roux3, Hervé Quenol4, Etienne Neethling5, Laure de Resseguier2, Cornelis van Leeuwen2, Irima Liviu6, Cristi Patriche6

1UMR 6554 CNRS LETG, Brest, France
2ISVV, Villenave-d’Ornon, France
3CIRAD, Montpellier, France
4UMR 6554 CNRS LETG, Rennes, France
5ESA, Angers, France
6University of Agricultural Sciences, Iasi, Romania

Contact the author

Keywords

Grapevine, production strategies, climate change, multi-agents model, adaptation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Fermentation Products, Degradation Parameters, (Poly)Phenols And Potassium Content In Tokaji Aszú Winemaking

The historic Tokaj Wine Region in northeast Hungary, a UNESCO World Heritage region since 2002, encompasses 5,500 ha vineyards. Produced from “noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil conditions (clay, loess on volcanic bedrock) and grape

Enhancing plant defense: carbon dots for efficient spray-induced gene silencing 

Ectopic RNA application for plant defense faces challenges in tree crops, including size, diffusion, and stability of active compounds such as ribonucleoproteins and nucleic acids. While existing strategies involve expressing dsRNA in transgenic plants targeting pathogens, our research strives to develop a transient RNAi system based on Spray-Induced Gene Silencing (SIGS). This approach aims to circumvent legal barriers and public concerns associated with genetically modified organisms (GMOs). Our strategy integrates SIGS with branched polyethyleneimine-functionalized Carbon Dots (bPEI-CDs) as nanocarriers, effectively addressing unique delivery challenges in plant defense as RNA stability and uptake enhancement

Effect of environmentally friendly vineyard protection strategies on yeast ecology during fermentation

AIM: Currently, an increasing concern from governments and consumers about environmental sustainability of wine production provides new challenges for innovation in wine industry. Accordingly, the application of more-environmentally friendly vineyard treatments against fungal diseases (powdery and downy mildew) could have a cascading impact on yeast ecology of wine production.

Impact of chitosan treatment on the physico-chemical features of a sangiovese red wine

Chitosan is gaining interest in red winemaking thanks to its ability to inhibit the development of Brettanomyces spp. yeast, or other undesired wine microbial threats. However, little is known about potential side-effects of its addition on the physico-chemical parameters of red wines.

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.