Terroir 2020 banner
IVES 9 IVES Conference Series 9 Simulating the impact of climate change on viticultural systems in various European vineyards

Simulating the impact of climate change on viticultural systems in various European vineyards

Abstract

Aim: Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007, 2015; van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010). They vary from short-term impacts on wine quality and style, to long-term issues such as varietal suitability and the economic sustainability of traditional wine growing regions (Schultz and Jones 2010; Quénol, 2014). Within the context of a global changing climate, we have decided to develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. 

Methods and Results: Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), present a generic modeling environment for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability, etc.) as well as production strategies and adaptation rules according to climate change scenarios.Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Agents are distinguished according to their objectives: “Supervisors” Agent plays an overseeing role in the model, “Winegrower” Agents aim to grow grapes and produce wine that meets precise specifications according to their end-product goals and “Vine” Agents are grape production entities. The relationships between these three types of agents determine the production strategies adopted by the winegrowers. According to two scenarios of climate change, several prospective simulations have been implemented, in the context of the European ADVICLIM project (http://www.adviclim.eu/), to compare adaptation strategies at European scale. Through different experiments in France, United Kingdom, Romania, Germany and Spain, the SEVE model provides potential adaptation strategies tendencies from short-term to long-term adjustment. Simulation results underline that small-scale variability is strongly linked with vine phenology and ripeness potential. Over the next century, winegrowers will likely be confronted with increasing temperatures and changing rainfall patterns that will have important impacts on agronomic practices (increase/decrease of fungicide treatments or soil management practices depending on site and scenario) and adaptation strategies (management of frost risk or heat waves, plant material adaptation, change in vine training system, etc.).

Conclusion:

The modelling approach presented in this paper addresses the impact of environmental conditions and constraints on vine phenology and management strategies. The SEVE model is able to reproduce the dynamics of vine growing and agronomic choices and practices according to climate variability. In the context of climate change, such a dynamic model will help to better assess potential impacts on vine behaviour and to identify potential adaptation pathways.

Significance of and Impact of the Study: As climate is a key factor of grapevine growth and fruit ripening, winegrowers are constantly adjusting their plot- to farm-level decision-making in response to climate variations. With a global changing climate, winegrowers are therefore required to continue developing adaptation strategies that deal with both short- and long-term climate changes, while likewise accounting for local vulnerability to avoid mal-adaptation. Based on a modelling approach, this study aims to identify and prioritise some rational adaptation strategies at local vineyard scales.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Cyril Tissot1*, Mathias Rouan1, Théo Petitjean2, Laurence David1, Renan Le Roux3, Hervé Quenol4, Etienne Neethling5, Laure de Resseguier2, Cornelis van Leeuwen2, Irima Liviu6, Cristi Patriche6

1UMR 6554 CNRS LETG, Brest, France
2ISVV, Villenave-d’Ornon, France
3CIRAD, Montpellier, France
4UMR 6554 CNRS LETG, Rennes, France
5ESA, Angers, France
6University of Agricultural Sciences, Iasi, Romania

Contact the author

Keywords

Grapevine, production strategies, climate change, multi-agents model, adaptation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Diversity and internationalization of wine grape varieties: Evidence from a revised global database

Aim: To quantify the extent to which national mixes of wine grape varieties (in terms of vineyard bearing area) have become more or less diversified, and ‘internationalized’, since wine globalization accelerated from the 1990s.

Management of grapevine water status with the DSS Vintel® provides evidence of sustainable irrigation strategies while maintaining wine quality of Pinot gris in Friuli-Venezia Giulia region, NE italy

Deficit irrigation strategies can be valuable means to improve grape quality while saving important amounts of water. A simple way to use deficit irrigation can be based on irrigating a vineyard with a determined level of crop evapotranspiration. Using a precise physiological parameter indicating water status, irrigation could be managed to maintain a specific pre-dawn leaf water potential.

Grapevine gas exchange responses to combined variations of leaf water, nitrogen and carbon status – a case of study of fungi tolerant varieties

In the context of climate change and the need to reduce inputs, optimising photosynthesis and grapevine performance requires a better understanding of the interactions between water status, nitrogen availability, and source-sink relationships.

Radiation-associated effects on regulated deficit irrigation management in grapevine cv. Cabernet Sauvignon

The main challenge of regulated deficit irrigation (RDI) research is to isolate the factors that come with RDI, the direct effect of plant water status from the indirect ones like increased radiation and temperature changes on the cluster zone. This study aims to isolate the effects of vine water status from the effects of increased radiation on the phenolic composition of grapes subjected to RDI.
A three-year study on an RDI experiment where radiation was controlled was implemented in a commercial vineyard of Cabernet Sauvignon in Chile. Four RDI treatments based on partial evapotranspiration (ET) irrigation were established. Irrigation treatments were 100% ET, 70% ET, 50-100% ET (50% ET before veraison and 100% ET afterward), and 35-100% ET (35% ET before veraison and 100% ET afterward).

The grapevine single-berry clock, practical tools and outcomes 

The dynamic sequence of physiological events along the three-months of berry development from anthesis to ripe stage has been thoroughly investigated. Most studies were performed on average samples, taking care to crush enough fruits to fairly represent the overall trend of the future harvest. However, phenological stages like 30% caps off (EL25) highlights the asynchronous nature of this population. Consequently, softening, onset of sugar accumulation and coloration were melted by asynchrony in a developmental mumbo jumbo, until their respective timing could be clarified by single berries approaches.