Terroir 2020 banner
IVES 9 IVES Conference Series 9 Simulating the impact of climate change on viticultural systems in various European vineyards

Simulating the impact of climate change on viticultural systems in various European vineyards

Abstract

Aim: Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007, 2015; van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010). They vary from short-term impacts on wine quality and style, to long-term issues such as varietal suitability and the economic sustainability of traditional wine growing regions (Schultz and Jones 2010; Quénol, 2014). Within the context of a global changing climate, we have decided to develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. 

Methods and Results: Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), present a generic modeling environment for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability, etc.) as well as production strategies and adaptation rules according to climate change scenarios.Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Agents are distinguished according to their objectives: “Supervisors” Agent plays an overseeing role in the model, “Winegrower” Agents aim to grow grapes and produce wine that meets precise specifications according to their end-product goals and “Vine” Agents are grape production entities. The relationships between these three types of agents determine the production strategies adopted by the winegrowers. According to two scenarios of climate change, several prospective simulations have been implemented, in the context of the European ADVICLIM project (http://www.adviclim.eu/), to compare adaptation strategies at European scale. Through different experiments in France, United Kingdom, Romania, Germany and Spain, the SEVE model provides potential adaptation strategies tendencies from short-term to long-term adjustment. Simulation results underline that small-scale variability is strongly linked with vine phenology and ripeness potential. Over the next century, winegrowers will likely be confronted with increasing temperatures and changing rainfall patterns that will have important impacts on agronomic practices (increase/decrease of fungicide treatments or soil management practices depending on site and scenario) and adaptation strategies (management of frost risk or heat waves, plant material adaptation, change in vine training system, etc.).

Conclusion:

The modelling approach presented in this paper addresses the impact of environmental conditions and constraints on vine phenology and management strategies. The SEVE model is able to reproduce the dynamics of vine growing and agronomic choices and practices according to climate variability. In the context of climate change, such a dynamic model will help to better assess potential impacts on vine behaviour and to identify potential adaptation pathways.

Significance of and Impact of the Study: As climate is a key factor of grapevine growth and fruit ripening, winegrowers are constantly adjusting their plot- to farm-level decision-making in response to climate variations. With a global changing climate, winegrowers are therefore required to continue developing adaptation strategies that deal with both short- and long-term climate changes, while likewise accounting for local vulnerability to avoid mal-adaptation. Based on a modelling approach, this study aims to identify and prioritise some rational adaptation strategies at local vineyard scales.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Cyril Tissot1*, Mathias Rouan1, Théo Petitjean2, Laurence David1, Renan Le Roux3, Hervé Quenol4, Etienne Neethling5, Laure de Resseguier2, Cornelis van Leeuwen2, Irima Liviu6, Cristi Patriche6

1UMR 6554 CNRS LETG, Brest, France
2ISVV, Villenave-d’Ornon, France
3CIRAD, Montpellier, France
4UMR 6554 CNRS LETG, Rennes, France
5ESA, Angers, France
6University of Agricultural Sciences, Iasi, Romania

Contact the author

Keywords

Grapevine, production strategies, climate change, multi-agents model, adaptation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Observatoire Grenache en Vallée du Rhône: incidence du terroir sur certains précurseurs d’arômes et substances volatiles

As observed in other grape varieties, Red Grenache juice contains low level of volatiles. The main flavor compounds are ” Iock up “as flavorless glycoconjugates which could generate at the wine pH volatile flavorants and constitute the varietal aroma of this cultivar.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Développement de l’appareil végétatif et maturation du raisin sur quatre sols de Pomerol en 1995

The Pomerol vineyard, located 35 km east of Bordeaux, covers around 800 ha on the left bank of the Isle. There is a system of fluvial terraces with more or less coarse gravel and pebble spreading, resting on a Tertiary substratum ranging from the Middle to Upper Eocene to the Lower Oligocene (Dubreuilh, 1993). This interweaving of terraces of varying thickness results in a brutal superposition of differentiated materials which give rise to various types of soil. Several site studies in this sector of the Libounais show significant morphological and analytical differences from one point to another (Guilloux et al ., 1978; Duteau, 1982; Van Leeuwen et al.., 1989). The distribution of the soils of the Pomerol vineyard was studied and resulted in a cartography at 1/25000th (Merouge, 1995).

Bees, climate changes, and “environmental sustainability 4.1c” in viticulture and the territory for a new global multiproductive “biometaethical district 4.1c”

The use of bees as pollinators in vine varieties with physiologically female flowers (Picolit, Bicane, Ceresa, Moscato rosa, etc.) (Cargnello, 1983) and as bio-indicators for biodiversity and environmental sustainability is well-known. Furthermore, there are interests in: 1-a. Making the viticulture of Belluno (Province of Veneto in North-eastern Italy, which is also famous for the Dolomites -a UNESCO World Heritage-) regain the socioeconomic role which it is entitled to and which it had got in its past by aiming at the enhancement of local grape variety in harmony with others, for example with the neighboring area of the Conegliano and Valdobbiadene Prosecco Superiore DOCG; 2-a. Maintaining and further improving the important natural and healthy environment of Belluno, and making its territory and the “lookout” means of the environmental sustainability, including its vineyards, even more naturally original and sustainable 4.1C.

Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

This work was aimed at setting up a methodology to define and map the «Unités Terroir de Reconnaissance» (UTR), combining environmental information stored in a Soil Information System with experimental data coming from benchmark vineyards of Sangiovese vine.