Terroir 2020 banner
IVES 9 IVES Conference Series 9 Simulating the impact of climate change on viticultural systems in various European vineyards

Simulating the impact of climate change on viticultural systems in various European vineyards

Abstract

Aim: Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007, 2015; van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010). They vary from short-term impacts on wine quality and style, to long-term issues such as varietal suitability and the economic sustainability of traditional wine growing regions (Schultz and Jones 2010; Quénol, 2014). Within the context of a global changing climate, we have decided to develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. 

Methods and Results: Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), present a generic modeling environment for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability, etc.) as well as production strategies and adaptation rules according to climate change scenarios.Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Agents are distinguished according to their objectives: “Supervisors” Agent plays an overseeing role in the model, “Winegrower” Agents aim to grow grapes and produce wine that meets precise specifications according to their end-product goals and “Vine” Agents are grape production entities. The relationships between these three types of agents determine the production strategies adopted by the winegrowers. According to two scenarios of climate change, several prospective simulations have been implemented, in the context of the European ADVICLIM project (http://www.adviclim.eu/), to compare adaptation strategies at European scale. Through different experiments in France, United Kingdom, Romania, Germany and Spain, the SEVE model provides potential adaptation strategies tendencies from short-term to long-term adjustment. Simulation results underline that small-scale variability is strongly linked with vine phenology and ripeness potential. Over the next century, winegrowers will likely be confronted with increasing temperatures and changing rainfall patterns that will have important impacts on agronomic practices (increase/decrease of fungicide treatments or soil management practices depending on site and scenario) and adaptation strategies (management of frost risk or heat waves, plant material adaptation, change in vine training system, etc.).

Conclusion:

The modelling approach presented in this paper addresses the impact of environmental conditions and constraints on vine phenology and management strategies. The SEVE model is able to reproduce the dynamics of vine growing and agronomic choices and practices according to climate variability. In the context of climate change, such a dynamic model will help to better assess potential impacts on vine behaviour and to identify potential adaptation pathways.

Significance of and Impact of the Study: As climate is a key factor of grapevine growth and fruit ripening, winegrowers are constantly adjusting their plot- to farm-level decision-making in response to climate variations. With a global changing climate, winegrowers are therefore required to continue developing adaptation strategies that deal with both short- and long-term climate changes, while likewise accounting for local vulnerability to avoid mal-adaptation. Based on a modelling approach, this study aims to identify and prioritise some rational adaptation strategies at local vineyard scales.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Cyril Tissot1*, Mathias Rouan1, Théo Petitjean2, Laurence David1, Renan Le Roux3, Hervé Quenol4, Etienne Neethling5, Laure de Resseguier2, Cornelis van Leeuwen2, Irima Liviu6, Cristi Patriche6

1UMR 6554 CNRS LETG, Brest, France
2ISVV, Villenave-d’Ornon, France
3CIRAD, Montpellier, France
4UMR 6554 CNRS LETG, Rennes, France
5ESA, Angers, France
6University of Agricultural Sciences, Iasi, Romania

Contact the author

Keywords

Grapevine, production strategies, climate change, multi-agents model, adaptation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Evaluation of the adaptation of Palomino Fino clones based on their physiological response

Genetic diversity within grapevine cultivars is a fundamental resource for varietal improvement and adaptation to cultivation requirements.

Innovative approach to energy efficiency benchmarking in the wine sector

The wine industry, a key sector for the European Union’s economy, exhibits significant energy consumption, amounting to approximately 1,750 million kWh annually within this geographic context, with major contributions from Italy, France, Spain, and Portugal (Fuentes Pila et al., 2015).

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

How different SO2 doses impact amino acid and volatile profile of white wines

Sulphur dioxide (SO2) is a well-established preservative in the wine industry. Its ability to act in different stages of the process as an antioxidant and an antiseptic as main characteristics makes it versatile. However, the need for its reduction or even its replacement has been increasing by the regulatory authorities as well as by the final consumer. To understand the impact of SO2 during ageing on volatile organic compounds (VOCs) and amino acids (AAs) profiles, two white wines (one varietal and one blend) were aged under the same conditions, in the presence of different doses of SO2. After fermentation (t=0), 0, 30, 60, 90 and 120 mg/L of SO2 were applied, wines were kept over lees for 3 months (t=3), then were bottled after 3 (t=6) and 9 (t=12) months.

Grape must quality and mesoclimatic variability in Fruška Gora wine-growing region, Serbia

The Fruška Gora mountain is a traditional wine-growing region in Serbia situated in the Pannonian Basin. Due to such a position, the vicinity of the Danube River and the presence of concave configuration, it is suitable for grape production. This paper provides analyses of spatial variations in meteorological parameters and grape juice quality within Fruška Gora wine region over three consecutive vintages (2018-2020). The examined period can be defined as warm with cool nights during September (AVG 18,9°C; GDD 1918°C; CI 12°CF) and with the presence of mesoclimatic variability. The East part of the study area was somewhat drier and hotter compared to other parts of the region. The analyses of grape must samples (190 in total) of five cultivars (Cabernet-Sauvignon, Merlot, Chardonnay, Sauvignon blanc and Grašac (Welschriesling)) commonly grown across the region (19 sites), were performed using Fourier Transform Infrared Technology (FTIR). Among all cultivars, Sauvignon blanc was harvested first in the East area (DOY=246±5, GDD at harvest=1552±74, 22.2±0.7 °Brix), while the latest harvest was recorded for Cabernet-Sauvignon in the West (DOY=283±5, GDD at harvest=1936±187, 23.4±1.0 °Brix ). Both the red and white cultivars had higher acidity and YAN in the grape must if the vines were grown in the North and East compared to South and West areas. According to PCA analysis, Grašac showed the lowest variation in grape must chemical composition. Thus, the results confirm that Grašac is the most stable cultivar in Fruška Gora. All monitored cultivars reached technological fruit ripeness by the end of the growing season. However, it was difficult to reach full ripeness of red cultivars, mostly beacuse of uncoupling of technolocical and phenolic ripeness. Thus, Cabernet-Sauvignon had higher variations in GDD sums at harvest compared to other cultivars, which probably increased variations in grape must quality.