Terroir 2020 banner
IVES 9 IVES Conference Series 9 Influence of temperature and light on vegetative growth and bud fruitfulness of grapevine cv. Semillon

Influence of temperature and light on vegetative growth and bud fruitfulness of grapevine cv. Semillon

Abstract

Aim: To investigate the effects of different levels of temperature and light intensity on grapevine vegetative growth and bud fruitfulness, which includes the number and size of inflorescence primordia in primary buds.

Methods and Results: Five hundred Semillon cuttings were collected from field during dormancy. After rooting, the cuttings were propagated in growth rooms under six different controlled environments, including two temperature regimes (30 °C day to 25°C night, and 20°C day to 15°C night ), and three levels of light intensities (90, 200, and 600 PAR, respectively) within each temperature regime. Light intensity and temperature at the bud zone were measured for each newly grown shoot at two stages to confirm the effectiveness of treatments. Vegetative growth, including leaf area, shoot weight and length, number of nodes, and internode length were recorded before all shoots were trimmed to 10 nodes each. Bud fruitfulness was assessed by bud dissection analysis at three stages according to the development of shoots. The number of anlagen and inflorescence primordia were recorded and the cross-sectional area of inflorescence primordia were measured. Results demonstrated that vegetative development was accelerated by higher temperature (with more nodes each shoot), but was negatively correlated with light intensity. Moreover, shoot leaf area, the weight and length of shoots, and internode length were higher under the lower temperatures and lower light intensities. There is a positive linear relationship between bud fruitfulness and both temperature and light, with more and larger inflorescence primordia under higher temperature and higher light intensity.

Conclusions: 

This study showed that the vigour of grapevine can be advanced by higher temperature, however, the vine capacity was negatively correlated with both temperature and light. For bud fruitfulness, the temperature and light can have a significant and synergetic impact both on the number and the size of inflorescence primordia in primary buds. 

Significance and Impact of the Study: Bud fruitfulness is a key component of reproductive performance of grapevine and it plays a significant role in annual production of vineyards. Environmental factors such as light and temperature are important parts of terroir and can have a strong impact on the formation of inflorescence primordia in latent buds, which determines the potential yield for the coming season. This study provides a better understanding on how temperature and light can change the vegetative growth and bud development of grapevine. The findings will be helpful for the management of vineyards to regulate yield in a changing climate.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Xiaoyi Wang1,2, Cassandra Collins1,2, Dabing Zhang2, Matthew Gilliham1,2*

1ARC Training Centre for Innovative Wine Production, The University of Adelaide, PMB1 Glen Osmond, SA, 5064, Australia
2The Waite Research Institute, and The School of Agriculture, Food and Wine. The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA, 5064, Australia

Contact the author

Keywords

Bud fertility, vegetative growth, bud development, inflorescence primordia, potential yield

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

What happens with the glutathione during winemaking and the storage of the wine?

We tried to give a part of the answer to this question by monitoring glutathione during winemaking and storage. The novelty of our approach is to quantify simultaneously the three known forms of glutathione: free glutathione (GSH), oxidized form (GSSG) and glutathione-S-sulfonate (GSSO3H).

Rare earth elements distribution in grape berries

Rare Earth Elements (REEs) include 15 lanthanides, yttrium and scandium. Their occurrence in soil and plants seems to be closely tied to the geological composition of the underlying mother rock, to the physical and chemical properties of the soil and to the specific ability of the plant to take up and accumulate these microelements.

Étude de la composante climatique du terroir viticole en Val de Loire : relation avec les facteurs physiques du milieu

The research carried out by the URVV of the INRA center in Angers aims to develop a methodology for the integrated characterization of the natural factors of viticultural terroirs, representative of the operating conditions of the vine and the sensory differences of the wines. In this context, the concept of Basic Terroir Unit (UTB) has been developed. The UTB represents a viticultural surface of variable geographical extension, defined as the association in a given place of a geological, pedological and landscape component, Morlat (1989), Riou et al. (1995).

Cartography of « Terroir Units » is a Tool to Improve the Ré Island Vineyard Management (France)

A study of « terroirs » was achieved from 2003 to 2005 in the whole vineyard of the Ré island (17, France). Over more than 1,990 ha, a cartography at the 1/10.000 scale, including characterization of climatic, pedological, geological and hydrogeological components of « Basic Terroir Units » (B.T.U.) was made. Also, a survey among wine growers was conducted. All data were treated together in a G.I.S. connected to a data base. 22 kinds of map were built (B.T.U. and components, soil water reserve, vine functioning potentials, varieties, rootstocks, viticultural practices and soil management).

Managing local field variability in the framework of precision viticulture

Managing grapevines according to the practices of Precision Agriculture (PA), may prove to be an asset in the hands of the modern grape growers.