Terroir 2020 banner
IVES 9 IVES Conference Series 9 Influence of temperature and light on vegetative growth and bud fruitfulness of grapevine cv. Semillon

Influence of temperature and light on vegetative growth and bud fruitfulness of grapevine cv. Semillon

Abstract

Aim: To investigate the effects of different levels of temperature and light intensity on grapevine vegetative growth and bud fruitfulness, which includes the number and size of inflorescence primordia in primary buds.

Methods and Results: Five hundred Semillon cuttings were collected from field during dormancy. After rooting, the cuttings were propagated in growth rooms under six different controlled environments, including two temperature regimes (30 °C day to 25°C night, and 20°C day to 15°C night ), and three levels of light intensities (90, 200, and 600 PAR, respectively) within each temperature regime. Light intensity and temperature at the bud zone were measured for each newly grown shoot at two stages to confirm the effectiveness of treatments. Vegetative growth, including leaf area, shoot weight and length, number of nodes, and internode length were recorded before all shoots were trimmed to 10 nodes each. Bud fruitfulness was assessed by bud dissection analysis at three stages according to the development of shoots. The number of anlagen and inflorescence primordia were recorded and the cross-sectional area of inflorescence primordia were measured. Results demonstrated that vegetative development was accelerated by higher temperature (with more nodes each shoot), but was negatively correlated with light intensity. Moreover, shoot leaf area, the weight and length of shoots, and internode length were higher under the lower temperatures and lower light intensities. There is a positive linear relationship between bud fruitfulness and both temperature and light, with more and larger inflorescence primordia under higher temperature and higher light intensity.

Conclusions: 

This study showed that the vigour of grapevine can be advanced by higher temperature, however, the vine capacity was negatively correlated with both temperature and light. For bud fruitfulness, the temperature and light can have a significant and synergetic impact both on the number and the size of inflorescence primordia in primary buds. 

Significance and Impact of the Study: Bud fruitfulness is a key component of reproductive performance of grapevine and it plays a significant role in annual production of vineyards. Environmental factors such as light and temperature are important parts of terroir and can have a strong impact on the formation of inflorescence primordia in latent buds, which determines the potential yield for the coming season. This study provides a better understanding on how temperature and light can change the vegetative growth and bud development of grapevine. The findings will be helpful for the management of vineyards to regulate yield in a changing climate.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Xiaoyi Wang1,2, Cassandra Collins1,2, Dabing Zhang2, Matthew Gilliham1,2*

1ARC Training Centre for Innovative Wine Production, The University of Adelaide, PMB1 Glen Osmond, SA, 5064, Australia
2The Waite Research Institute, and The School of Agriculture, Food and Wine. The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA, 5064, Australia

Contact the author

Keywords

Bud fertility, vegetative growth, bud development, inflorescence primordia, potential yield

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Temperature-based phenology modelling for the grapevine 

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios.

Il piano regolatore delle città’ del vino: aspetti urbanistici, economici e turistici

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Aromatic profile evolution of corvina, corvinone and rondinella grapes during withering

AIM AND METHODS: Grape withering is one of the key steps in the production of the most renowned red wines of the Valpolicella area, namely Amarone and Recioto. This practice, which was already used since Roman times, entails important modifications in grape composition and in the chemical and sensorial characteristics of the corresponding wines, especially in terms of aromatic profile. The aim of this research is evaluating the aromatic evolution during grape withering of the three main varieties used in Valpolicella wines: Corvina, Corvinone and Rondinella.Samples of the three varieties were analyzed at harvest and at different stages of withering, namely10%, 20% and 30% of weight loss. Free and glycosidically bound compounds were extracted and analyzed using Gas Chromatography- Mass Spectrometry (GC-MS). RESULTS: For all the samples the data were normalized to eliminate the effect of concentration due to grape dehydration. Terpene content and evolution varied considerably in relationship to grape variety. Corvinone was richer in cyclic terpenes (including phellandrene, limonene, and cymene) and they decreased during withering.

Innovation in pre- and post-harvest biocontrol: novel strategies against Botrytis cinerea for grape preservation

Driven by the demand for sustainable agriculture, biocontrol is emerging as a crucial alternative to chemical fungicides for crop protection.

Decline of rootstock-mediated physiological responses in Tempranillo grapevines by prolonged extreme conditions

Agriculture faces many global warming challenges especially in the Mediterranean region. Many strategies have been proposed in viticulture to manage global warming. Rootstocks are among them since they may affect water uptake and the scion’s performance.
The study conducted in La Rioja, Spain, aimed to investigate the impact of different rootstocks (1103P and 161-49C) on the performance of the Tempranillo grapevine scion over a three-day cycles under drought and extreme conditions, specifically during a heatwave in July 2022, with maximum air temperatures up to 40ºC and average daily temperatures of 29.1ºC.