Terroir 2020 banner
IVES 9 IVES Conference Series 9 Influence of temperature and light on vegetative growth and bud fruitfulness of grapevine cv. Semillon

Influence of temperature and light on vegetative growth and bud fruitfulness of grapevine cv. Semillon

Abstract

Aim: To investigate the effects of different levels of temperature and light intensity on grapevine vegetative growth and bud fruitfulness, which includes the number and size of inflorescence primordia in primary buds.

Methods and Results: Five hundred Semillon cuttings were collected from field during dormancy. After rooting, the cuttings were propagated in growth rooms under six different controlled environments, including two temperature regimes (30 °C day to 25°C night, and 20°C day to 15°C night ), and three levels of light intensities (90, 200, and 600 PAR, respectively) within each temperature regime. Light intensity and temperature at the bud zone were measured for each newly grown shoot at two stages to confirm the effectiveness of treatments. Vegetative growth, including leaf area, shoot weight and length, number of nodes, and internode length were recorded before all shoots were trimmed to 10 nodes each. Bud fruitfulness was assessed by bud dissection analysis at three stages according to the development of shoots. The number of anlagen and inflorescence primordia were recorded and the cross-sectional area of inflorescence primordia were measured. Results demonstrated that vegetative development was accelerated by higher temperature (with more nodes each shoot), but was negatively correlated with light intensity. Moreover, shoot leaf area, the weight and length of shoots, and internode length were higher under the lower temperatures and lower light intensities. There is a positive linear relationship between bud fruitfulness and both temperature and light, with more and larger inflorescence primordia under higher temperature and higher light intensity.

Conclusions: 

This study showed that the vigour of grapevine can be advanced by higher temperature, however, the vine capacity was negatively correlated with both temperature and light. For bud fruitfulness, the temperature and light can have a significant and synergetic impact both on the number and the size of inflorescence primordia in primary buds. 

Significance and Impact of the Study: Bud fruitfulness is a key component of reproductive performance of grapevine and it plays a significant role in annual production of vineyards. Environmental factors such as light and temperature are important parts of terroir and can have a strong impact on the formation of inflorescence primordia in latent buds, which determines the potential yield for the coming season. This study provides a better understanding on how temperature and light can change the vegetative growth and bud development of grapevine. The findings will be helpful for the management of vineyards to regulate yield in a changing climate.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Xiaoyi Wang1,2, Cassandra Collins1,2, Dabing Zhang2, Matthew Gilliham1,2*

1ARC Training Centre for Innovative Wine Production, The University of Adelaide, PMB1 Glen Osmond, SA, 5064, Australia
2The Waite Research Institute, and The School of Agriculture, Food and Wine. The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA, 5064, Australia

Contact the author

Keywords

Bud fertility, vegetative growth, bud development, inflorescence primordia, potential yield

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Effect of oenological tannins on wine aroma before and after oxidation: a real-time study by coupling sensory (TDS) and chemical (PTR-ToF-MS) analyses

Polyphenols are important compounds involved in many chemical and sensory wine features. In winemaking, adding oenological tannins claims to have positive impacts on wine stability, protection from oxidation and aroma persistence. Polyphenols are antioxidant compounds by either scavenging reactive oxygen and nitrogen species or chelating Fe2+ ions (1). However, as tannins oxidation leads to the formation of highly reactive species (i.e. ortho-quinones), it is still unclear if they have an effective role toward oxidation of wine aromas (2). In this work, we aim at studying the effect of two commercial tannins (proanthocyanidins, ellagitannins) on red wine flavour (mainly aroma) before and after air exposition.

La pianificazione del paesaggio agrario vitivinicolo del basso Monferrato

Monferrato is a sub region of Piedmont featuring an endless series of hills which have been moulded through the centuries by laborious farming. Vineyards have always been the protagonists of Monferrato landscape. Asti vineyards have been well-known since Roman times and Pliny the Elder mentions them.

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Exploring between- and within-vineyard variability of “Malvasia di Candia aromatica” vineyards from Colli Piacentini

Several studies demonstrated how climate and soil may be key drivers of variability at different scales.

Understanding the expression of gene families involved in anthocyanin biosynthesis during berry ripening: Tannat as a case study

The quality of wine is assessed, among other things, by its color, which is mainly due to its anthocyanin content. These pigments are polyphenols that give red, purple and blue hues depending on the relative proportion of anthocyanins produced by the action of flavonoid 3’5′ hydroxylase (delphinidin-3-glucoside, petunidin-3-glucoside, malvidin-3-glucoside) or flavonoid 3′ hydroxylase (cyanidin-3-glucoside, peonidin-3-glucoside). To study the genes involved in this biosynthetic pathway, we focused on Vitis vinifera cv. Tannat, known for producing wines with higher anthocyanin content and darker purple color compared to most red grape varieties. In this work, we have performed RNA-Seq analysis of skins during berry development, taking green and red berries at 50% veraison as separate samples, as an experimental strategy to focus on the differential expression of genes of interest.