Terroir 2020 banner
IVES 9 IVES Conference Series 9 Influence of temperature and light on vegetative growth and bud fruitfulness of grapevine cv. Semillon

Influence of temperature and light on vegetative growth and bud fruitfulness of grapevine cv. Semillon

Abstract

Aim: To investigate the effects of different levels of temperature and light intensity on grapevine vegetative growth and bud fruitfulness, which includes the number and size of inflorescence primordia in primary buds.

Methods and Results: Five hundred Semillon cuttings were collected from field during dormancy. After rooting, the cuttings were propagated in growth rooms under six different controlled environments, including two temperature regimes (30 °C day to 25°C night, and 20°C day to 15°C night ), and three levels of light intensities (90, 200, and 600 PAR, respectively) within each temperature regime. Light intensity and temperature at the bud zone were measured for each newly grown shoot at two stages to confirm the effectiveness of treatments. Vegetative growth, including leaf area, shoot weight and length, number of nodes, and internode length were recorded before all shoots were trimmed to 10 nodes each. Bud fruitfulness was assessed by bud dissection analysis at three stages according to the development of shoots. The number of anlagen and inflorescence primordia were recorded and the cross-sectional area of inflorescence primordia were measured. Results demonstrated that vegetative development was accelerated by higher temperature (with more nodes each shoot), but was negatively correlated with light intensity. Moreover, shoot leaf area, the weight and length of shoots, and internode length were higher under the lower temperatures and lower light intensities. There is a positive linear relationship between bud fruitfulness and both temperature and light, with more and larger inflorescence primordia under higher temperature and higher light intensity.

Conclusions: 

This study showed that the vigour of grapevine can be advanced by higher temperature, however, the vine capacity was negatively correlated with both temperature and light. For bud fruitfulness, the temperature and light can have a significant and synergetic impact both on the number and the size of inflorescence primordia in primary buds. 

Significance and Impact of the Study: Bud fruitfulness is a key component of reproductive performance of grapevine and it plays a significant role in annual production of vineyards. Environmental factors such as light and temperature are important parts of terroir and can have a strong impact on the formation of inflorescence primordia in latent buds, which determines the potential yield for the coming season. This study provides a better understanding on how temperature and light can change the vegetative growth and bud development of grapevine. The findings will be helpful for the management of vineyards to regulate yield in a changing climate.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Xiaoyi Wang1,2, Cassandra Collins1,2, Dabing Zhang2, Matthew Gilliham1,2*

1ARC Training Centre for Innovative Wine Production, The University of Adelaide, PMB1 Glen Osmond, SA, 5064, Australia
2The Waite Research Institute, and The School of Agriculture, Food and Wine. The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA, 5064, Australia

Contact the author

Keywords

Bud fertility, vegetative growth, bud development, inflorescence primordia, potential yield

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Grape phenolic compounds are located in the internal layers of grape skins and seeds. They are synthesized via the phenyl-propanoid biosynthetic pathway which is modulated by both biotic and abiotic factors.

Assessing macro-elements contents in vine leaves and grape berries of Vitis vinifera using near-infrared spectroscopy coupled with chemometrics

The cultivated vine (Vitis vinifera) is the main species cultivated in the world to make wine. In 2017, the world wine market represents 29 billion euros in exports, and France contributes 8.2 billion (28%) to this trade, making it a traditional market of strategic importance. Viticulture is therefore a key sector of the French agricultural economy. It is in this context that the nutritional diagnosis of the vine is of real strategic interest to winegrowers. Indeed, the fertilization of the vine is a tool for the winegrower that allows him to influence and regulate the quality of the wine.

Mechanical fruit zone leaf removal and deficit irrigation practices interact to affect yield and fruit quality of Cabernet Sauvignon grown in a hot climate

Cabernet Sauvignon is the top red wine cultivar in CA, however, the hot climate in Fresno is not ideal for Cabernet Sauvignon, particularly for berry color development. Fruit-zone leaf removal and irrigation were studied previously to have the significant effect on grape yield performance and berry quality. But the timing of leaf removal and the timing of irrigation are still inconclusive. Also, mechanical fruit-zone leaf removal is relatively new in CA. Our study aims to identify the interactive effect of mechanical fruit-zone leaf removal and irrigation on Cabernet Sauvignon’s yield performance and fruit quality and find the ideal timing of leaf removal and irrigation to maximize the berry color while maintaining the sustainable yield level.

Key learnings about the chemical bases of wine uniqueness and quality, essential companions for future developments

This presentation aims to demonstrate that the value attributed to wine as we today know it is based on three factors: 1) sensory balance, 2) personality, and 3) bioactivity.

Influence of protective colloids on tartrate stability, polysaccharide contents and volatile compound profile of a white wine

The tartaric salts precipitation is one of the main issues regarding wine instability 1. In addition to the well-known and deeply studied phenomena of potassium hydrogentartrate precipitation (KHT), the last decade has been increased the phenomena of calcium tartrate (CaT) precipitation, that is a concern for the wine industry 2.