Terroir 2020 banner
IVES 9 IVES Conference Series 9 Influence of temperature and light on vegetative growth and bud fruitfulness of grapevine cv. Semillon

Influence of temperature and light on vegetative growth and bud fruitfulness of grapevine cv. Semillon

Abstract

Aim: To investigate the effects of different levels of temperature and light intensity on grapevine vegetative growth and bud fruitfulness, which includes the number and size of inflorescence primordia in primary buds.

Methods and Results: Five hundred Semillon cuttings were collected from field during dormancy. After rooting, the cuttings were propagated in growth rooms under six different controlled environments, including two temperature regimes (30 °C day to 25°C night, and 20°C day to 15°C night ), and three levels of light intensities (90, 200, and 600 PAR, respectively) within each temperature regime. Light intensity and temperature at the bud zone were measured for each newly grown shoot at two stages to confirm the effectiveness of treatments. Vegetative growth, including leaf area, shoot weight and length, number of nodes, and internode length were recorded before all shoots were trimmed to 10 nodes each. Bud fruitfulness was assessed by bud dissection analysis at three stages according to the development of shoots. The number of anlagen and inflorescence primordia were recorded and the cross-sectional area of inflorescence primordia were measured. Results demonstrated that vegetative development was accelerated by higher temperature (with more nodes each shoot), but was negatively correlated with light intensity. Moreover, shoot leaf area, the weight and length of shoots, and internode length were higher under the lower temperatures and lower light intensities. There is a positive linear relationship between bud fruitfulness and both temperature and light, with more and larger inflorescence primordia under higher temperature and higher light intensity.

Conclusions: 

This study showed that the vigour of grapevine can be advanced by higher temperature, however, the vine capacity was negatively correlated with both temperature and light. For bud fruitfulness, the temperature and light can have a significant and synergetic impact both on the number and the size of inflorescence primordia in primary buds. 

Significance and Impact of the Study: Bud fruitfulness is a key component of reproductive performance of grapevine and it plays a significant role in annual production of vineyards. Environmental factors such as light and temperature are important parts of terroir and can have a strong impact on the formation of inflorescence primordia in latent buds, which determines the potential yield for the coming season. This study provides a better understanding on how temperature and light can change the vegetative growth and bud development of grapevine. The findings will be helpful for the management of vineyards to regulate yield in a changing climate.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Xiaoyi Wang1,2, Cassandra Collins1,2, Dabing Zhang2, Matthew Gilliham1,2*

1ARC Training Centre for Innovative Wine Production, The University of Adelaide, PMB1 Glen Osmond, SA, 5064, Australia
2The Waite Research Institute, and The School of Agriculture, Food and Wine. The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA, 5064, Australia

Contact the author

Keywords

Bud fertility, vegetative growth, bud development, inflorescence primordia, potential yield

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Amino nitrogen content in grapes: the impact of crop limitation

As an essential element for grapevine development and yield, nitrogen is also involved in the winemaking process and largely affects wine composition. Grape must amino nitrogen deficiency affects the alcoholic fermentation kinetics and alters the development of wine aroma precursors. It is therefore essential to control and optimize nitrogen use efficiency by the plant to guarantee suitable grape nitrogen composition at harvest. Understanding the impact of environmental conditions and cultural practices on the plant nitrogen metabolism would allow us to better orientate our technical choices with the objective of quality and sustainability (less inputs, higher efficiency). This trial focuses on the impact of crop limitation – that is a common practice in European viticulture – on nitrogen distribution in the plant and particularly on grape nitrogen composition. A wide gradient of crop load was set up in a homogeneous plot of Chasselas (Vitis vinifera) in the experimental vineyard of Agroscope, Switzerland. Dry weight and nitrogen dynamics were monitored in the roots, trunk, canopy and grapes, during two consecutive years, using a 15N-labeling method. Grape amino nitrogen content was assessed in both years, at veraison and at harvest. The close relationship between fruits and roots in the maintenance of plant nitrogen balance was highlighted. Interestingly, grape nitrogen concentration remained unchanged regardless of crop load to the detriment of the growth and nitrogen content of the roots. Meanwhile, the size and the nitrogen concentration of the canopy were not affected. Leaf gas exchange rates were reduced in response to lower yield conditions, reducing carbon and nitrogen assimilation and increasing intrinsic water use efficiency. The must amino nitrogen profiles could be discriminated as a function of crop load. These findings demonstrate the impact of plant balance on grape nitrogen composition and contribute to the improvement of predictive models and sustainable cultural practices in perennial crops.

Politics meets terroir. The story of Prosecco – Are GI’s just a protectionist racket?

The recent Free Trade Agreement negotiations between Australia and the European Union have again put the issue of Geographical Indications (GIs) in the spotlight. Australia has long demonstrated its understanding of GIs and maintains a clear and rigorous GI protection system for wine. For many years, Australia’s wine sector was a strong advocate for GIs and a strong system to protect the

Polyphenolic profile and dietary fiber content of skins and seeds from unfermented and fermented grape pomace

The valorization of winemaking byproducts is subordinated to the knowledge of their chemical characteristics. This work concerned the determination of the polyphenolic profile and the dietary fiber content of skins and seeds from unfermented and fermented pomace of different cultivars (Moscato bianco, Cortese, Arneis, Pinot Noir, Barbera, Grignolino, Nebbiolo), sampled from some wineries in the Piedmont area (Italy) during the 2020 harvest.

Phylloxera root infection drives vineyard water

Most of the rootstocks used in viticulture today are partly resistant against grape phylloxera (Daktulosphaira vitifoliae Fitch) and host phylloxera on the root system without conspicuous negative impacts on fruit production).

Typicality of Rioja wines: identification of sensory profiles for the three subregions of DOCa Rioja

Within the DOCa Rioja three main production areas are differentiated: Rioja Alta (RA), Rioja Alavesa (RAv) and Rioja Oriental (RO). They are three diverse territories with particular characteristics that are claimed to give rise to differentiated profiles. The present work aims at evaluating the sensory diversity of young commercial red wines in these three subregions. Therefore 30 young red wines (mainly Tempranillo and vintage 2021), ten from each subregion, were sensory described following a non-verbal free sorting task and a verbal free comment task by 32 well-established Rioja winemakers.