Terroir 2020 banner
IVES 9 IVES Conference Series 9 Influence of deficit irrigation on grapevine cv. “Touriga Nacional” in Douro region: A metabolomic approach

Influence of deficit irrigation on grapevine cv. “Touriga Nacional” in Douro region: A metabolomic approach

Abstract

Aim: This study aimed to evaluate whether irrigation of Touriga Nacional in Douro Demarcated Region (DDR) can partly mitigate the negative impacts of ongoing climate change on grapevine yield and quality and its impact on plant metabolism.

Methods and results: Water status was determined by performing pre-dawn leaf water potential (ΨPd) using a pressure chamber throughout the growing season. Although from the end of July till the end of August of 2018 both R30 and R70 significantly prevented a decay of ΨPd under extreme drought conditions, R30 promoted only a relatively small increase of yield at harvest, but this increase was not observed at R70. In 2019, drought conditions were not so harsh than in 2018 and differences in cluster weights were not observed among irrigation treatments at harvest. A UPLC-MS-based targeted metabolomic analysis from the vintage 2018 identified 44 compounds in grapes from non-irrigated (R0), irrigated at 30% of evapotranspiration (ETc; R30) and 70% ETc (R70), corresponding to eight classes: amino acids; phenolic acids; stilbenoid DP1; stilbenoid DP2; flavonols; flavan-3-ols; di-OH anthocyanins and tri-OH anthocyanins. PCA analysis showed that irrigation influenced the composition of the different classes of grape berry compounds e.g. amino acids, phenolic acids, stilbenoids, flavonols, flavan-3-ols, and anthocyanins.

Conclusions:

In the two consecutive seasons of 2018 and 2019 in DDR irrigation at R30 and R70 failed to bring Touriga Nacional vines to hydric comfort at veraison, when drought stress was more pronounced, and did not substantially affect yield and berry quality traits at harvest. However, UPLC-MS-base metabolomics analyses highlighted that berry metabolism was tuned under different irrigation regimes, but more water did not traduce in higher contents of key metabolites like anthocyanins

Significance and Impact of the Study: Douro Demarcated Region (DDR) has a Mediterranean climate with low rainfall values during summer, high temperatures and high levels of radiation. The introduction of irrigation in this region is still a matter of debate due to the limited number of available studies.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Inês Cabral1*, António  Teixeira2, Arnaud  Lanoue3, Marianne  Unlubayir3, Thibaut  Munsch3, Joana  Valente4, Fernando  Alves4, Pedro  Costa4, Frank  Rogerson4, Susana  Carvalho1, Hernâni  Gerós2,5,6, Anabela  Carneiro1, Jorge  Queiroz1

1GreenUPorto – Research Centre for Sustainable Agrifood Production & DGAOT, Faculty of Sciences, University of Porto, Vairão, Portugal
2Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Gualtar, Portugal
3Université de Tours, EA2106 Biomolécules et Biotechnologie Végétales, Tours, France
4Symington Family Estates, Vila Nova de Gaia, Portugal
5Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
6Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Gualtar, Portugal

Contact the author

Keywords

Deficit irrigation, metabolomics, leaf water potential, grape quality

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Exploring zoxamide sensitivity in Plasmopara viticola populations: implications for fungicide management in precision agriculture

Fungicides play a critical role in managing grapevine downy mildew caused by the oomycete Plasmopara viticola, a biotrophic and polycyclic pathogen with a high risk of fungicide resistance. Zoxamide, categorized as a low to medium resistance risk, disrupts cell division by inhibiting tubulin polymerization. Resistance to zoxamide is uncommon in field isolates. This six-year study (2017-2022) aimed to detect and quantify zoxamide sensitivity in P. viticola populations across varying resistance pressures in Italian grapevine regions. Analysis of 126 samples from 57 vineyards, mainly in North-Eastern Italy, revealed that most samples exhibited EC50, EC95, and MIC values below 0.1 and 10 mg/L of zoxamide, respectively. Nineteen vineyards showed reduced sensitivity (MIC>100 mg/L), but only four samples were characterized by 24-54% resistant oospores at >100 mg/L of zoxamide.

The impact of nutrition label formats on wine consumer preferences

Recent regulations concerning alcoholic beverages have prompted producers to revise their product labels to incorporate nutritional information. In this context, qr codes containing such information, known as e-labels, are now being employed on wine labels for the first time.

Distribution analysis of myo and scyllo-inositol in natural grape must

s it is well known, myo and scyllo-inositol are two characteristic sugars of grape must and, for this reason, their quantification has been proposed to control the authenticity of the concentrated and rectificated grape must.

Characterization of a strain of Lachancea thermotolerans, microorganism of choice when facing the climatic challenges of the wine sector

Current climatic challenges in the wine sector require innovative solutions to maintain the quality of wines while adapting oenological practices to changing conditions. This article presents the detailed study of a lachancea thermotolerans strain on matrices typical of the French mediterranean area.

The regulation of ABA-induced anthocyanin accumulation in grape berry

Color is a key quality trait for grape berry and the producing wines. Berry color of red genotypes is mainly determined by the quantity and composition of anthocyanins accumulated in the skin and/or pulp. Both genetic and environmental factors could influence the quantity and composition of anthocyanins, while the underlying mechanisms are not fully clear. To explore the mechanisms underlying the diversity of anthocyanin accumulation in grape berry, we compared two grapevine genotypes showing distinct sensitivities to ABA-induced anthocyanin biosynthesis, where one genotype showed minor responses to exogenous ABA application while the other showed significant increase in anthocyanins after exogenous ABA application.