Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil monoliths, soil variability and terroir

Soil monoliths, soil variability and terroir

Abstract

Aim: The aim of this work is educating people about soil variability and terroir. Soil monoliths are used to educate the wine industry about how to describe a soil profile, interpret the soil formation processes operating in a particular soil profile and consequently the impact of soil properties on vine growth, fruit quality and wine production. Soil monoliths are a permanent artistic tool for educating, research and management of soil variability.  

Method and Results: Soil profiles have a unique genetic combination of layers resulting from physical, chemical and biological processes in a landscape. Soil monoliths are permanent intact visual artistic examples of the changes in a landscape and reflect the history of soil development in unique locations. Three examples are presented from a property on Western Fleurieu Peninsula South Australia. The property is 40 ha, has average rainfall 500 mm, no water supply and elevation ranging from 80 m to 140 m above sea level. It is proposed to establish a portion of the property to bush vines.  Soil monoliths and one open soil pit show the key soil types.  

Soil 1 consists of 40 cm sand over massive yellow-brown sandy clay (Sodosol – Australian Soil Classification).  Soil 2 consists of sandy clay loam over red structured clay mixed with soil carbonate (calcic Red Chromosol – Australian Soil Classification).  Soil 3 consists of dark sandy clay loam over soil carbonate and calcareous weathered shale (Calcarosol – Australian Soil Classification). Planting of bush vines is being considered for Soil 2. This soil is at 90-100 m elevation above sea level with a north-west aspect. There is no water supply and the vines will need to be established dry grown. Readily available water holding capacity (RAW) for the soil is 45 mm and rootzone 60 cm.  This site has a friable angular blocky structured B horizon allow water and vine root penetration. There is no saline soil or major soil carbonate limitation that occurs with Soil 1 and Soil 3 respectively.     

Conclusions: 

Soil monoliths are a permanent intact section of soil that can be used for education, artistic display, research and management of soil changes over time. They can be collected from all parts of a landscape to show soil variability and terroir.

Significance and Impact of the Study: Soil profile characterisation is essential to all forms of agriculture and horticulture.  Understanding how soil variability impacts on vine root growth, fruit quality and wine production is the essence of Terroir.  Soil monoliths are a permanent, intact representation of soil variability and are useful for education, research and management of soil.  They are artistic and can convey the importance of soil properties in a visual, tactile manner.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Geoff Kew1*

1Kew Wetherby Soil Survey Pty Ltd, Second Valley, South Australia, Australia, 5204

Contact the author

Keywords

Soil monolith, soil variability, soil profile description, soil horizon, field hand texture, soil structure

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.

Caractéristiques physiques et agronomiques des principaux terroirs viticoles de l’Anjou (France). Conséquences pour la viticulture

Une étude conduite dans le cœur du vignoble A.O.C. angevin, sur une surface d’environ 30.000 ha, a permis de caractériser et cartographier finement (levé au 1/12.500)

Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

The Japanese beetle, Popillia japonica Newman, is considered one of the most harmful organisms due to its ability to feed on more than 300 plant species. Symptoms indicative of adult beetles include feeding holes in host plants extending to skeletonization of leaves when population numbers are high. The vine is one of the species most affected by this beetle. However, the damaged plants, even if with difficulty, manage to recover, bringing the bunches of grapes to ripeness.

Maturità fenolica e cellulare come metodo di valutazione dell’interazione vitigno-ambiente: il caso del Cabernet-Sauvignon

ln the current work, phenolic and cellular maturation curves were used to assess the degree of adaptation of the cultivar Cabernet sauvignon to the sites under esamination. Five wine­-producing zones with different pedoclimatic characteristics and latitudes were considered (Marche, Toscana, Emilia, Friuli and Slovenia).