Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil monoliths, soil variability and terroir

Soil monoliths, soil variability and terroir

Abstract

Aim: The aim of this work is educating people about soil variability and terroir. Soil monoliths are used to educate the wine industry about how to describe a soil profile, interpret the soil formation processes operating in a particular soil profile and consequently the impact of soil properties on vine growth, fruit quality and wine production. Soil monoliths are a permanent artistic tool for educating, research and management of soil variability.  

Method and Results: Soil profiles have a unique genetic combination of layers resulting from physical, chemical and biological processes in a landscape. Soil monoliths are permanent intact visual artistic examples of the changes in a landscape and reflect the history of soil development in unique locations. Three examples are presented from a property on Western Fleurieu Peninsula South Australia. The property is 40 ha, has average rainfall 500 mm, no water supply and elevation ranging from 80 m to 140 m above sea level. It is proposed to establish a portion of the property to bush vines.  Soil monoliths and one open soil pit show the key soil types.  

Soil 1 consists of 40 cm sand over massive yellow-brown sandy clay (Sodosol – Australian Soil Classification).  Soil 2 consists of sandy clay loam over red structured clay mixed with soil carbonate (calcic Red Chromosol – Australian Soil Classification).  Soil 3 consists of dark sandy clay loam over soil carbonate and calcareous weathered shale (Calcarosol – Australian Soil Classification). Planting of bush vines is being considered for Soil 2. This soil is at 90-100 m elevation above sea level with a north-west aspect. There is no water supply and the vines will need to be established dry grown. Readily available water holding capacity (RAW) for the soil is 45 mm and rootzone 60 cm.  This site has a friable angular blocky structured B horizon allow water and vine root penetration. There is no saline soil or major soil carbonate limitation that occurs with Soil 1 and Soil 3 respectively.     

Conclusions: 

Soil monoliths are a permanent intact section of soil that can be used for education, artistic display, research and management of soil changes over time. They can be collected from all parts of a landscape to show soil variability and terroir.

Significance and Impact of the Study: Soil profile characterisation is essential to all forms of agriculture and horticulture.  Understanding how soil variability impacts on vine root growth, fruit quality and wine production is the essence of Terroir.  Soil monoliths are a permanent, intact representation of soil variability and are useful for education, research and management of soil.  They are artistic and can convey the importance of soil properties in a visual, tactile manner.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Geoff Kew1*

1Kew Wetherby Soil Survey Pty Ltd, Second Valley, South Australia, Australia, 5204

Contact the author

Keywords

Soil monolith, soil variability, soil profile description, soil horizon, field hand texture, soil structure

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

A survey on the rotundone content of 18 grape varieties sourced from a germplasm 

Rotundone, the pepper aroma compound, has been detected in wines made from a large number of grape varieties. However, given the fact that analyzed wines were sourced from different winegrowing regions and seasons, made using different winemaking techniques and at different scales, it remains difficult to assess the real variety potential to produce rotundone.

Valorization of winemaking by-products through circular economy approaches

Winemaking generates significant amounts of by-products, such as grape pomace and wine lees, which are primarily used for distillation and composting.

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

A facile and robust method for the quantification of polyphenols in red wine via NMR

Nuclear magnetic resonance spectroscopy (NMR) is a high-tech analytical method that recently found its way into the field of wine analysis with special focus on wine authentication.

Evaluation of Acıkara (Vitis vinifera L.) native grape variety of anatolia for red wine production potential

The acıkara grape variety, a nearly forgotten native black variety in Anatolia/Turkey, has recently gained interest in its potential for producing high-quality wine from producers and consumers. The potential of producing high-quality red wine from the Acıkara grape variety (vitis vinifera), which is cultivated on the elmalı/antalya in the highland (1100 m altitude) of western mediterranean region, was investigated, and the suitability of the wine’s characteristics associated with high-quality red wine was determined.