Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil monoliths, soil variability and terroir

Soil monoliths, soil variability and terroir

Abstract

Aim: The aim of this work is educating people about soil variability and terroir. Soil monoliths are used to educate the wine industry about how to describe a soil profile, interpret the soil formation processes operating in a particular soil profile and consequently the impact of soil properties on vine growth, fruit quality and wine production. Soil monoliths are a permanent artistic tool for educating, research and management of soil variability.  

Method and Results: Soil profiles have a unique genetic combination of layers resulting from physical, chemical and biological processes in a landscape. Soil monoliths are permanent intact visual artistic examples of the changes in a landscape and reflect the history of soil development in unique locations. Three examples are presented from a property on Western Fleurieu Peninsula South Australia. The property is 40 ha, has average rainfall 500 mm, no water supply and elevation ranging from 80 m to 140 m above sea level. It is proposed to establish a portion of the property to bush vines.  Soil monoliths and one open soil pit show the key soil types.  

Soil 1 consists of 40 cm sand over massive yellow-brown sandy clay (Sodosol – Australian Soil Classification).  Soil 2 consists of sandy clay loam over red structured clay mixed with soil carbonate (calcic Red Chromosol – Australian Soil Classification).  Soil 3 consists of dark sandy clay loam over soil carbonate and calcareous weathered shale (Calcarosol – Australian Soil Classification). Planting of bush vines is being considered for Soil 2. This soil is at 90-100 m elevation above sea level with a north-west aspect. There is no water supply and the vines will need to be established dry grown. Readily available water holding capacity (RAW) for the soil is 45 mm and rootzone 60 cm.  This site has a friable angular blocky structured B horizon allow water and vine root penetration. There is no saline soil or major soil carbonate limitation that occurs with Soil 1 and Soil 3 respectively.     

Conclusions: 

Soil monoliths are a permanent intact section of soil that can be used for education, artistic display, research and management of soil changes over time. They can be collected from all parts of a landscape to show soil variability and terroir.

Significance and Impact of the Study: Soil profile characterisation is essential to all forms of agriculture and horticulture.  Understanding how soil variability impacts on vine root growth, fruit quality and wine production is the essence of Terroir.  Soil monoliths are a permanent, intact representation of soil variability and are useful for education, research and management of soil.  They are artistic and can convey the importance of soil properties in a visual, tactile manner.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Geoff Kew1*

1Kew Wetherby Soil Survey Pty Ltd, Second Valley, South Australia, Australia, 5204

Contact the author

Keywords

Soil monolith, soil variability, soil profile description, soil horizon, field hand texture, soil structure

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Water status, nitrogen status and leaf area/ crop ratio effect on aromatic potential of vitis viniferaberries : example of Sauvignon blanc

Les effets de l’état hydrique et de l’alimentation en azote sur le potentiel aromatique des raisins de Sauvignon blanc ont été mesurés sur des vignobles du Bordelais. Les déficits hydriques ont été caractérisés par le potentiel tige déterminé en milieu de journée ΨTmin)­. L’alimentation en azote a été étudiée à partir d’une zone carencée en azote. Une part de cette zone a été supplémentée avec de l’azote minéral.

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.

Identifying New Zealand Sauvignon blanc terroirs

The concept of terroir is well established in the ‘old world’ wine industry but its use is still relatively new in New Zealand. Marlborough Sauvignon blanc has become a benchmark

Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

The measurement of carbon isotopic discrimination in grape sugars 13 at harvest (δ C) is an integrated assessment of water status during ripening.

Characterization of the DOC wine “Colli Piacentini Gutturnio” obtained in three traditional areas

The poster presents the results of the 3rd year of activity of the project “Characterization of the wine productions of the italian regions. The DOC wine Colli Piacentini Gutturnio”.