Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil monoliths, soil variability and terroir

Soil monoliths, soil variability and terroir

Abstract

Aim: The aim of this work is educating people about soil variability and terroir. Soil monoliths are used to educate the wine industry about how to describe a soil profile, interpret the soil formation processes operating in a particular soil profile and consequently the impact of soil properties on vine growth, fruit quality and wine production. Soil monoliths are a permanent artistic tool for educating, research and management of soil variability.  

Method and Results: Soil profiles have a unique genetic combination of layers resulting from physical, chemical and biological processes in a landscape. Soil monoliths are permanent intact visual artistic examples of the changes in a landscape and reflect the history of soil development in unique locations. Three examples are presented from a property on Western Fleurieu Peninsula South Australia. The property is 40 ha, has average rainfall 500 mm, no water supply and elevation ranging from 80 m to 140 m above sea level. It is proposed to establish a portion of the property to bush vines.  Soil monoliths and one open soil pit show the key soil types.  

Soil 1 consists of 40 cm sand over massive yellow-brown sandy clay (Sodosol – Australian Soil Classification).  Soil 2 consists of sandy clay loam over red structured clay mixed with soil carbonate (calcic Red Chromosol – Australian Soil Classification).  Soil 3 consists of dark sandy clay loam over soil carbonate and calcareous weathered shale (Calcarosol – Australian Soil Classification). Planting of bush vines is being considered for Soil 2. This soil is at 90-100 m elevation above sea level with a north-west aspect. There is no water supply and the vines will need to be established dry grown. Readily available water holding capacity (RAW) for the soil is 45 mm and rootzone 60 cm.  This site has a friable angular blocky structured B horizon allow water and vine root penetration. There is no saline soil or major soil carbonate limitation that occurs with Soil 1 and Soil 3 respectively.     

Conclusions: 

Soil monoliths are a permanent intact section of soil that can be used for education, artistic display, research and management of soil changes over time. They can be collected from all parts of a landscape to show soil variability and terroir.

Significance and Impact of the Study: Soil profile characterisation is essential to all forms of agriculture and horticulture.  Understanding how soil variability impacts on vine root growth, fruit quality and wine production is the essence of Terroir.  Soil monoliths are a permanent, intact representation of soil variability and are useful for education, research and management of soil.  They are artistic and can convey the importance of soil properties in a visual, tactile manner.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Geoff Kew1*

1Kew Wetherby Soil Survey Pty Ltd, Second Valley, South Australia, Australia, 5204

Contact the author

Keywords

Soil monolith, soil variability, soil profile description, soil horizon, field hand texture, soil structure

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Climate effect on ripening process in Vitis vinifera, L. cv. Cencibel

A seven years survey (2003 to 2009) has been carried out over old traditional vineyards cv. Cencibel in La Mancha region (Spain). Seven plots with more than 35 years old were sampled from veraison to harvest, measuring soluble solids (ºBaumé) and acid concentration (g/l in tartaric acid).

La protection des terroirs viticoles dans l’AOC Côtes du Rhône (France)

[English version below]

Les terroirs viticoles, et plus particulièrement ceux des vignobles AOC, sont aujourd’hui menacés par de multiples agressions. Ces territoires sont non seulement l’outil de production

Investigation on the potentiality of a biostimulant by Fabaceae tissues and rich in triacontanol to enhance grapevine resilience under drought stress

The primary objective of this research was to investigate the potential benefits of a Fabaceae-based product rich in triacontanol (a long-chain alcohol) applied to Vitis vinifera cv. Merlot, on key physiological and productive parameters of grapevines under controlled water stress conditions.

Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Cultivar and rootstock selection are two well-known strategies for adapting vine production in challenging environments. Despite the vast diversity of rootstocks and cultivars, their effective contribution to grapevine sustainable development and acclimation to changing growing conditions remains an open question. The use of robust and prompt monitoring tools can allow a powerful screening of the water status of the vineyard before considering a further detailed characterization. This study leveraged new tools to monitor the stomatal conductance (gs), transpiration rate (E), and quantum efficiency of photosystem II (ᶲPSII) throughout a season, from pre-veraison to after-harvest.

Using open source software in viticultural research

Many high quality Open Source scientific applications have been available for a long time. Some of them have proved to be particularly useful for carrying out the usual activities involved in viticultural research projects, such as statistical analyses (including spatial analyses), GIS work, database management (possibly integrated with statistical and spatial analysis) and even “low-level” often highly time-consuming activities (e.g. repetitive task on text files).