Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Recent advancements in understanding the terroir effect on aromas in grapes and wines

Recent advancements in understanding the terroir effect on aromas in grapes and wines

Abstract

OENO One – Special issue

Terroir is about the link between wine and its origin. It has long been understood by sensory evaluation that the taste of wine from a given variety can be related to its origins. Specific organoleptic characteristics of wine are influenced by environmental factors such as soil and climate. By deconstructing the effect of measurable soil and climate parameters on grape and wine aroma compounds, the terroir effect on wine typicity can be better understood. Climate influences on vine development and grape ripening are mainly associated with temperature, radiation and rainfall, while soil influences are primarily associated with water availability and nitrogen supply. Significant advances have been made over recent years in understanding wine aromas and their molecular basis and influences of climate and soil on a wide range of molecules responsible for wine aroma expression. This article aims to review these recent research advances to obtain a more comprehensive understanding of how terroir influences wine typicity. The effect of terroir on wine quality and typicity is sometimes considered intangible and difficult to explain on a scientific basis. By combining agronomic, analytical and sensory approaches, however, this review shows that the terroir effect is mediated by measurable factors that can easily be monitored in the vineyard. Assessment of the results compiled by this review allows the suggestion that terroir expression at specific sites might be maximized by choosing appropriate plant material in relation to soil and climate, by acting on manageable parameters like vine water and nitrogen status, or by implementing canopy management to modify microclimate in the bunch zone.

DOI:

Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video

Authors

Cornelis van Leeuwen1*, Jean-Christophe Barbe2, Philippe Darriet2, Olivier Geffroy3, Eric Gomès1, Sabine Guillaumie1, Pierre Helwi4, Justine Laboyrie2, Georgia Lytra2, Nicolas Le Menn2, Stéphanie Marchand2, Magali Picard2,5, Alexandre Pons2,6, Armin Schüttler2,7 and Cécile Thibon2

1EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Inrae, ISVV, 33882 Villenave d’Ornon, France
2Unité de Recherche OEnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon France
3PPGV, Université de Toulouse, INP-PURPAN, 75 voie du TOEC, F-31076 Toulouse Cedex 3, France
4Texas A&M AgriLife Extension Service, TAMU, Lubbock 79403, Texas, United States
5Demptos Research Center, CESAMO, Institut des Sciences Moléculaires, Univ. Bordeaux, 351 Cours de la Libération, F-33405 Talence, France
6Tonnellerie Seguin-Moreau, ZI Merpins, 16103 Cognac
7Hochschule Geisenheim Unversity, Von-Lade-Strasse 1, 65366 Geisenheim, Germany

Contact the author

Keywords

Terroir soil climate temperature radiation water balance nitrogenvine wine aroma typicity

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Spatial variability of grape berry maturation program at the molecular level 

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening.

Is it relevant to consider remote sensing information for targeted plant monitoring?

An experiment was carried out to test the relevance of using satellite images (NDVI) to define locations of plant monitoring systems.

‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate.

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar.