Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Recent advancements in understanding the terroir effect on aromas in grapes and wines

Recent advancements in understanding the terroir effect on aromas in grapes and wines

Abstract

OENO One – Special issue

Terroir is about the link between wine and its origin. It has long been understood by sensory evaluation that the taste of wine from a given variety can be related to its origins. Specific organoleptic characteristics of wine are influenced by environmental factors such as soil and climate. By deconstructing the effect of measurable soil and climate parameters on grape and wine aroma compounds, the terroir effect on wine typicity can be better understood. Climate influences on vine development and grape ripening are mainly associated with temperature, radiation and rainfall, while soil influences are primarily associated with water availability and nitrogen supply. Significant advances have been made over recent years in understanding wine aromas and their molecular basis and influences of climate and soil on a wide range of molecules responsible for wine aroma expression. This article aims to review these recent research advances to obtain a more comprehensive understanding of how terroir influences wine typicity. The effect of terroir on wine quality and typicity is sometimes considered intangible and difficult to explain on a scientific basis. By combining agronomic, analytical and sensory approaches, however, this review shows that the terroir effect is mediated by measurable factors that can easily be monitored in the vineyard. Assessment of the results compiled by this review allows the suggestion that terroir expression at specific sites might be maximized by choosing appropriate plant material in relation to soil and climate, by acting on manageable parameters like vine water and nitrogen status, or by implementing canopy management to modify microclimate in the bunch zone.

DOI:

Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video

Authors

Cornelis van Leeuwen1*, Jean-Christophe Barbe2, Philippe Darriet2, Olivier Geffroy3, Eric Gomès1, Sabine Guillaumie1, Pierre Helwi4, Justine Laboyrie2, Georgia Lytra2, Nicolas Le Menn2, Stéphanie Marchand2, Magali Picard2,5, Alexandre Pons2,6, Armin Schüttler2,7 and Cécile Thibon2

1EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Inrae, ISVV, 33882 Villenave d’Ornon, France
2Unité de Recherche OEnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon France
3PPGV, Université de Toulouse, INP-PURPAN, 75 voie du TOEC, F-31076 Toulouse Cedex 3, France
4Texas A&M AgriLife Extension Service, TAMU, Lubbock 79403, Texas, United States
5Demptos Research Center, CESAMO, Institut des Sciences Moléculaires, Univ. Bordeaux, 351 Cours de la Libération, F-33405 Talence, France
6Tonnellerie Seguin-Moreau, ZI Merpins, 16103 Cognac
7Hochschule Geisenheim Unversity, Von-Lade-Strasse 1, 65366 Geisenheim, Germany

Contact the author

Keywords

Terroir soil climate temperature radiation water balance nitrogenvine wine aroma typicity

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Moving beyond visible flower counting: RGB image-based flower number and yield prediction in grapevine

Accurate yield estimation is crucial for optimizing vineyard management and logistical organization. Traditional methods relying on manual and destructive flower or berry counts are labor-intensive and unsuitable for large-scale applications.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Sensory and chemical phenotyping of wines from a F1 grapevine population

The European Green Deal, a concept of the European Commission, aims at the reduction of pesticides in EU agriculture for 2030 by 50%. Viticulture uses the largest amounts of fungicides in the EU

Soil or geology? And what’s the difference? Some observations from the New World

Observational historical geology seeks to establish the evolutionary history of the surface of Earth. This approach is applicable not only to bedrock, but to the soft material that lies at the surface, the stuff called soil by most people. The geologic perspective provides a view of this material that is quite different from that of soil science, at least as practiced by many in America.