Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Recent advancements in understanding the terroir effect on aromas in grapes and wines

Recent advancements in understanding the terroir effect on aromas in grapes and wines

Abstract

OENO One – Special issue

Terroir is about the link between wine and its origin. It has long been understood by sensory evaluation that the taste of wine from a given variety can be related to its origins. Specific organoleptic characteristics of wine are influenced by environmental factors such as soil and climate. By deconstructing the effect of measurable soil and climate parameters on grape and wine aroma compounds, the terroir effect on wine typicity can be better understood. Climate influences on vine development and grape ripening are mainly associated with temperature, radiation and rainfall, while soil influences are primarily associated with water availability and nitrogen supply. Significant advances have been made over recent years in understanding wine aromas and their molecular basis and influences of climate and soil on a wide range of molecules responsible for wine aroma expression. This article aims to review these recent research advances to obtain a more comprehensive understanding of how terroir influences wine typicity. The effect of terroir on wine quality and typicity is sometimes considered intangible and difficult to explain on a scientific basis. By combining agronomic, analytical and sensory approaches, however, this review shows that the terroir effect is mediated by measurable factors that can easily be monitored in the vineyard. Assessment of the results compiled by this review allows the suggestion that terroir expression at specific sites might be maximized by choosing appropriate plant material in relation to soil and climate, by acting on manageable parameters like vine water and nitrogen status, or by implementing canopy management to modify microclimate in the bunch zone.

DOI:

Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video

Authors

Cornelis van Leeuwen1*, Jean-Christophe Barbe2, Philippe Darriet2, Olivier Geffroy3, Eric Gomès1, Sabine Guillaumie1, Pierre Helwi4, Justine Laboyrie2, Georgia Lytra2, Nicolas Le Menn2, Stéphanie Marchand2, Magali Picard2,5, Alexandre Pons2,6, Armin Schüttler2,7 and Cécile Thibon2

1EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Inrae, ISVV, 33882 Villenave d’Ornon, France
2Unité de Recherche OEnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon France
3PPGV, Université de Toulouse, INP-PURPAN, 75 voie du TOEC, F-31076 Toulouse Cedex 3, France
4Texas A&M AgriLife Extension Service, TAMU, Lubbock 79403, Texas, United States
5Demptos Research Center, CESAMO, Institut des Sciences Moléculaires, Univ. Bordeaux, 351 Cours de la Libération, F-33405 Talence, France
6Tonnellerie Seguin-Moreau, ZI Merpins, 16103 Cognac
7Hochschule Geisenheim Unversity, Von-Lade-Strasse 1, 65366 Geisenheim, Germany

Contact the author

Keywords

Terroir soil climate temperature radiation water balance nitrogenvine wine aroma typicity

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Practical Aspects of Viticultural Zoning In South Africa

Depuis 1973, une commission statutaire administre la législation qui régit le zonage vitivinicole en Afrique du Sud. La province «Le Cap de l’ouest» cerne toutes les zones viticoles sauf quatre unités. Pour la plupart, le Cap de l’ouest a un climat méditerranéen. Les zones viticoles – qui produisent les «vins d’origine» – sont des régions, des districts, des quartiers et des domaines. Les régions sont vastes, séparées par la topographie, par ex. des chaînes de montagnes et des fleuves. Généralement, chaque région représente une zone climatique. Le climat de chaque district est plus homogène. Les quartiers sont exactement délimités par le climat, la topographie et la géologie. Les domaines sont les plus petits. Chaque domaine doit avoir un seul propriétaire.

Effect of the shade generated by simulated solar panels in two row orientation on the physiology and productivity of Vitis vinifera L. cv. Malbec

Context and purpose of the study. In regions where grapevines are grown under irrigation, like most regions in Argentina, the wine industry should adopt more sustainable strategies and production systems towards a higher water use efficiency and a reduction in no-renewable energy consumption.

First characterization of Torrontés Riojano in la Rioja, Argentina: impact of pruning intensity on vine vigor and grape production 

Pruning is one essential vineyard management activity whose main purpose is to regulate plant growth and vigour, modulating berry size, and consequently, wine quality. In Chilecito, La Rioja Province, Argentina, Torrontés Riojano stands as the only autochthonous variety for winemaking, yielding golden and aromatic berries and distinctive muscatel-tasting wines. This white cultivar, resulting from the natural cross between Moscatel de Alejandría x Criolla Chica, is traditionally trained in “parral” (horizontal trellis system), aimed to manage vigorous canopies. This project constitutes the first study on the influence of pruning intensity on Torrontés Riojano growth habit and berry quality.

Fungal communites diversity and functional roles of different types of Botrytis cinerea infected grape berries on different growing sites

Botrytis cinerea, an Ascomycota pathogen with a broad host range, infects over 1200 plant species. Grapes infected by this pathogen, which subsequently develop a noble rot, remain in the vineyard for an extended period, thus being exposed to a diverse array of physical, chemical and biological factors, which give rise to a complex microbial community.

Development of FTIR partial least squares models for polyphenol quantification in red wine during fermentation

Polyphenolic compounds are considered to have a major impact on the quality of red wines. Sensory impact, such as astringency and bitterness, stems directly from tannin composition. Thenceforth, quick analytical measurement of phenolic compounds appears to be a real challenge for winemaking monitoring and process control. Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. A reliable and rapid method to obtain this kind of measurement is Fourier Transform Infrared (FTIR) spectroscopy.