Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Abstract

Aim: Through machine-learning modelling of plant water status from environmental characteristics, this work aims to develop a model able to predict grape phenolic composition in space and time to guide selective harvest decisions at the estate scale.

Methods and Results: Work was conducted during two consecutive seasons in a ~40ha (100ac) premium wine estate located in the Adelaida District AVA of Paso Robles, CA, USA. The vineyard topography was very diverse, with a large variation in slope grade (0-30%) and exposure (0-359). One hundred experimental units were identified by a maximum dissimilarity sampling algorithm based on environmental attributes derived from a digital elevation model and a soil map. Reflecting the estate varietal distribution, ~70% were Cabernet-Sauvignon units, 20% Cabernet-Franc, and 10% Petit-Verdot units grafted on 1103P or 420A (~50-50%). Grapevine water status was monitored by weekly measurements of stem water potentials, Ψstem, and analysis of carbon isotope discrimination of grape musts, δ13C, at harvest. The grape composition during ripening was assessed by measuring total soluble solids, titratable acidity, and pH of musts and by a comprehensive assessment of skin phenolic composition with HPLC-DAD. Additional field measurements included shoot-count and yield assessment. Vegetation indexes were derived from canopy reflectance obtained from ~3m resolution CubeSat satellites. Irrigation amounts were provided by the grower, and weather data were obtained from three on-site stations. 

Grapevine Ψstem was modelled from weather data (temperature, relative humidity, rainfall), irrigation amounts, vegetation indexes, topographic attributes, soil type using a gradient-boosting-machine algorithm. The model was able to predict plant water status with <0.1 MPa of error (estimated as root mean squared error in a cross-validation procedure). Significant differences in water status were observed between rootstocks and main environmental drivers were slope grade and aspect (i.e. exposure). External validation of the model was carried out by correlating predictions with δ13C. The model allowed obtaining high-resolution daily mapping of Ψstem at the estate scale. Time-series of grapevine Ψstem were significantly correlated with the content of total soluble solids of musts, grape anthocyanin amounts, and the ratio of tri-hydroxylated to di-hydroxylated compounds at harvest and mapped. Spatial-clustering of grape anthocyanin composition was obtained from Ψstem model-estimates and used to guide harvest selectively. 

Conclusion: 

Grapevine water status confirmed to be an important driver in the variability of grape composition, even though the vineyard was irrigated. Variability in water status was related to environmental attributes (slope, aspect, incoming radiation) and the machine-learning approach proved to be useful to predict and understand plant-environment interactions and effects on grape composition in a varied and large dataset.

Significance and Impact of the Study: Vineyards are often located on slopes and accurate modelling of grapevine water status in hillslope conditions is a challenging task. This research demonstrates for the first time that it is possible to obtain daily estimates of grapevine water status at the estate scale by re-elaborating routine measurements with machine-learning technologies. This information can be used to drive selective harvest decisions and clustering within-vineyard variability at the estate scale to easily implement selective harvest decisions.

DOI:

Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video

Authors

Luca Brillante

California State University Fresno, Fresno, United States

Contact the author

Keywords

Grapevine water status, machine learning, phenolic composition

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Influence of a spontaneous cover crop on the vineyard and soil erosion under Mediterranean climate

Sixty five % of the agricultural area of the Basque Country located in the DO Ca Rioja corresponds to vineyards. More than 40% of it has an average slope greater than 10%, which makes it sensitive to erosive processes. Furthermore, it is foreseeable that extreme weather events (storms, hail, extreme heat and cold, etc.) will be favored due to climate change. Cover cropping can mitigate this risk, and therefore the objective of this work is to evaluate the impact that a vegetable cover has on the agronomic behavior of the vineyard, the quality of the grape and soil erosion. For this, a trial has been carried out with a Graciano variety vineyard with a slope between 10% -20% during the years 2020 and 2021. Conventional tillage management in the area has been compared (4-6 passes per year of tillage machinery) versus spontaneous vegetation cover management in the vineyard. This implies not tilling and allowing the grass of the land to colonize the range between the lines of vines, controlling their height through 1-3 mowing passes per year, always trying to affect the surface of the land as little as possible. The vegetative growth, yield and quality of the grape and wine was measured. Furthermore, erosion has been measured using Gerlasch boxes. The yield was lower in the second year of the trial in the cover crop treatment, but erosion was significantly reduced.

Lead levels in fortified wines

AIM The main lead exposure route is the intake of contaminated food, water, and alcoholic beverages, in particular wine. At the gastric level, Pb is transformed into a soluble compound which, when conveyed into the bloodstream, is the long-term cause of saturnism, intoxication with neurotoxic, nephrotoxic and hematopoietic effects, and with the neurological developmental delay of children. Pb is classified by the International Agency for Research on Cancer as a 2A class, possible carcinogenic to humans. In an opinion on possible health risks, CONTAM considered that cereals, vegetables, drinking water, and wine give a greater contribute to dietary exposure to Pb in Europe. Large quantities of wine, beer, and other alcoholic products drinking can increase daily Pb intake above the maximum permitted levels.

Prefermentative CO2 saturation of grape must to obtaining white wines with low SO2 content

The objective this work has been study the possibility of partially or completely replacing sulphur in the winemaking of white wines through the use of the prefermentative saturation of musts with CO2.

On the meaning of looking for terroir perceptions in blind tastings

If one considers as “physical or sensory attributes” of a wine its concentrations of alcohol and of other substances, it can be stated that another class of attributes exists

Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Proximal sensors are becoming widely used in precision viticulture, due to the quick, easy and non-invasive identification of soil spatial variability. The apparent soil electrical conductivity (ECa) is the main parameter measured by sensors, which is correlated to many factors, like soil water content, salinity, clay content and mineralogy, rock fragments, bulk density, and porosity.