Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Abstract

Aim: Through machine-learning modelling of plant water status from environmental characteristics, this work aims to develop a model able to predict grape phenolic composition in space and time to guide selective harvest decisions at the estate scale.

Methods and Results: Work was conducted during two consecutive seasons in a ~40ha (100ac) premium wine estate located in the Adelaida District AVA of Paso Robles, CA, USA. The vineyard topography was very diverse, with a large variation in slope grade (0-30%) and exposure (0-359). One hundred experimental units were identified by a maximum dissimilarity sampling algorithm based on environmental attributes derived from a digital elevation model and a soil map. Reflecting the estate varietal distribution, ~70% were Cabernet-Sauvignon units, 20% Cabernet-Franc, and 10% Petit-Verdot units grafted on 1103P or 420A (~50-50%). Grapevine water status was monitored by weekly measurements of stem water potentials, Ψstem, and analysis of carbon isotope discrimination of grape musts, δ13C, at harvest. The grape composition during ripening was assessed by measuring total soluble solids, titratable acidity, and pH of musts and by a comprehensive assessment of skin phenolic composition with HPLC-DAD. Additional field measurements included shoot-count and yield assessment. Vegetation indexes were derived from canopy reflectance obtained from ~3m resolution CubeSat satellites. Irrigation amounts were provided by the grower, and weather data were obtained from three on-site stations. 

Grapevine Ψstem was modelled from weather data (temperature, relative humidity, rainfall), irrigation amounts, vegetation indexes, topographic attributes, soil type using a gradient-boosting-machine algorithm. The model was able to predict plant water status with <0.1 MPa of error (estimated as root mean squared error in a cross-validation procedure). Significant differences in water status were observed between rootstocks and main environmental drivers were slope grade and aspect (i.e. exposure). External validation of the model was carried out by correlating predictions with δ13C. The model allowed obtaining high-resolution daily mapping of Ψstem at the estate scale. Time-series of grapevine Ψstem were significantly correlated with the content of total soluble solids of musts, grape anthocyanin amounts, and the ratio of tri-hydroxylated to di-hydroxylated compounds at harvest and mapped. Spatial-clustering of grape anthocyanin composition was obtained from Ψstem model-estimates and used to guide harvest selectively. 

Conclusion: 

Grapevine water status confirmed to be an important driver in the variability of grape composition, even though the vineyard was irrigated. Variability in water status was related to environmental attributes (slope, aspect, incoming radiation) and the machine-learning approach proved to be useful to predict and understand plant-environment interactions and effects on grape composition in a varied and large dataset.

Significance and Impact of the Study: Vineyards are often located on slopes and accurate modelling of grapevine water status in hillslope conditions is a challenging task. This research demonstrates for the first time that it is possible to obtain daily estimates of grapevine water status at the estate scale by re-elaborating routine measurements with machine-learning technologies. This information can be used to drive selective harvest decisions and clustering within-vineyard variability at the estate scale to easily implement selective harvest decisions.

DOI:

Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video

Authors

Luca Brillante

California State University Fresno, Fresno, United States

Contact the author

Keywords

Grapevine water status, machine learning, phenolic composition

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Grape solids: new advances on the understanding of their role in enological alcoholic fermentation

Residual grape solids (suspended particles) in white and rosé musts vary depending on the clarification pro-cess. These suspended solids contain lipids (more especially phytosterols) that are essential for yeast meta-bolism and viability during fermentation in anaerobic conditions.

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many
publications on this subject are nowadays available in the literature most of them only reported feasibility
studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150
wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis.

Factors involved in the acumulation of acetic acid inside the grapes during winemaking by carbonic maceration

Vinification by carbonic maceration (CM) is based in the anaerobic fermentative metabolism also called intracellular fermentation (IF).

Contribution of grape and oak wood barrels to pyrrole content in wines – Influence of several cooperage parameters

Chardonnay is the world’s most planted white grape variety and has met a great commercial success for decades.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.