Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Abstract

Aim: Through machine-learning modelling of plant water status from environmental characteristics, this work aims to develop a model able to predict grape phenolic composition in space and time to guide selective harvest decisions at the estate scale.

Methods and Results: Work was conducted during two consecutive seasons in a ~40ha (100ac) premium wine estate located in the Adelaida District AVA of Paso Robles, CA, USA. The vineyard topography was very diverse, with a large variation in slope grade (0-30%) and exposure (0-359). One hundred experimental units were identified by a maximum dissimilarity sampling algorithm based on environmental attributes derived from a digital elevation model and a soil map. Reflecting the estate varietal distribution, ~70% were Cabernet-Sauvignon units, 20% Cabernet-Franc, and 10% Petit-Verdot units grafted on 1103P or 420A (~50-50%). Grapevine water status was monitored by weekly measurements of stem water potentials, Ψstem, and analysis of carbon isotope discrimination of grape musts, δ13C, at harvest. The grape composition during ripening was assessed by measuring total soluble solids, titratable acidity, and pH of musts and by a comprehensive assessment of skin phenolic composition with HPLC-DAD. Additional field measurements included shoot-count and yield assessment. Vegetation indexes were derived from canopy reflectance obtained from ~3m resolution CubeSat satellites. Irrigation amounts were provided by the grower, and weather data were obtained from three on-site stations. 

Grapevine Ψstem was modelled from weather data (temperature, relative humidity, rainfall), irrigation amounts, vegetation indexes, topographic attributes, soil type using a gradient-boosting-machine algorithm. The model was able to predict plant water status with <0.1 MPa of error (estimated as root mean squared error in a cross-validation procedure). Significant differences in water status were observed between rootstocks and main environmental drivers were slope grade and aspect (i.e. exposure). External validation of the model was carried out by correlating predictions with δ13C. The model allowed obtaining high-resolution daily mapping of Ψstem at the estate scale. Time-series of grapevine Ψstem were significantly correlated with the content of total soluble solids of musts, grape anthocyanin amounts, and the ratio of tri-hydroxylated to di-hydroxylated compounds at harvest and mapped. Spatial-clustering of grape anthocyanin composition was obtained from Ψstem model-estimates and used to guide harvest selectively. 

Conclusion: 

Grapevine water status confirmed to be an important driver in the variability of grape composition, even though the vineyard was irrigated. Variability in water status was related to environmental attributes (slope, aspect, incoming radiation) and the machine-learning approach proved to be useful to predict and understand plant-environment interactions and effects on grape composition in a varied and large dataset.

Significance and Impact of the Study: Vineyards are often located on slopes and accurate modelling of grapevine water status in hillslope conditions is a challenging task. This research demonstrates for the first time that it is possible to obtain daily estimates of grapevine water status at the estate scale by re-elaborating routine measurements with machine-learning technologies. This information can be used to drive selective harvest decisions and clustering within-vineyard variability at the estate scale to easily implement selective harvest decisions.

DOI:

Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video

Authors

Luca Brillante

California State University Fresno, Fresno, United States

Contact the author

Keywords

Grapevine water status, machine learning, phenolic composition

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

The potential of multispectral/hyperspectral technologies for early detection of “flavescence dorée” in a Portuguese vineyard

“Flavescence dorée” (FD) is a grapevine quarantine disease associated with phytoplasmas and transmitted to healthy plants by insect vectors, mainly Scaphoideus titanus. Infected plants usually develop symptoms of stunted growth, unripe cane wood, leaf rolling, leaf yellowing or reddening, and shrivelled berries. Since plants can remain symptomless up to four years, they may act as reservoirs of FD contributing to the spread of the disease. So far, conventional management strategies rely mainly on the insecticide treatments, uprooting of infected plants and use of phytoplasma-free propagation material. However, these strategies are costly and could have undesirable environmental impacts. Thus, the development of sustainable and noninvasive approaches for early detection of FD and its management are of great importance to reduce disease spread and select the best cultural practices and treatments. The present study aimed to evaluate if multispectral/hyperspectral technologies can be used to detect FD before the appearance of the first symptoms and if infected grapevines display a spectral imaging fingerprint. To that end, physiological parameters (leaf area, chlorophyll content and photosynthetic rate) were collected in concomitance to the measurements of plant reflectance (using both a portable apparatus and a remote sensing drone). Measurements were performed in two leaves of 8 healthy and 8 FD-infected grapevines, at four timepoints: before the development of disease symptoms (21st June); and after symptoms appearance (ii) at veraison (2nd August); at post-veraison (11th September); and at harvest (25th September). At all timepoints, FD infected plants revealed a significant decrease in the studied physiological parameters, with a positive correlation with drone imaging data and portable apparatus analyses. Moreover, spectra of either drone imaging and portable apparatus showed clear differences between healthy and FD-infected grapevines, validating multispectral/ hyperspectral technology as a potential tool for the early detection of FD or other grapevine-associated diseases.

Soil quality in Beaujolais vineyard. Importance of pedology and cultural practices

A pedological study was carried out from 2009 to 2017 in Beaujolais vineyard, to improve physical and chemical knowledge of soils. It was completed in 2016 and 2017 by the current study, dealing with microbial aspects, in order to build a reference frame for improved advice in soil management. Microbial biomass was measured on representative plots of the six most common soil types identified in Beaujolais and, for each soil type, on plots with different levels of the main impacting parameters: total organic carbon, pH, cation exchange capacity, extractable copper. A total of 59 soil samples were collected. Confirming the results of various trials carried out in Beaujolais over the past 20 years, the results of the present study showed that the soils were still alive, but exhibited a large variability of biological parameters, which appeared dependant on both pedological and anthropic factors. Therefore, a good interpretation of biological parameters and advice for vine growers must rely on a pedologically-based referential with differentiated main driving factors. For example, the control of pH is of primary importance in granitic soils and in no way organic matter addition can improve soil quality if pH is too low. Conversely, in calcareous soils, biological parameters are more directly affected by direct or indirect (cover crops for example) inputs of organic matter. The use of biological parameters, such as microbial biomass, is of great potential value to improve advice on agro-viticultural practices (soil management, fertilization, liming, etc.), basis of a sustainable wine production on fragile soils.

Modulation of berry composition by different vineyard management practices

High concentration of sugars in grapes and alcohol in wines is one of the consequences of climate change on viticulture production in several wine-growing regions. In order to investigate the possibilities of adaptation of vineyard management practices aimed to reduce the accumulation of sugar during the maturation phase without reducing the accumulation of anthocyanins in grapes, a study with severe shoot trimming, shoot thinning, cluster thinning and date of harvest was conducted on Merlot variety in Istria region (Croatia), under the Mediterranean climate. Four factors which may affect grape maturation and its composition at harvest were investigated in a two-years experiment; severe shoot trimming applied at veraison when >80% of berries changed colour (in comparison to untreated control), shoot thinning (0 and 30%), cluster thinning (0 and 30%), and the date of harvest (early and standard harvest dates). Shoot thinning had no significant impact on berry composition, despite the obtained reduction in yield per vine. Lower Brix in grapes were obtained with earlier harvest date and if no cluster thinning was applied, although at the same time a reduction in the concentration of anthocyanins in berries was observed in these treatments. On the other hand, if severe shoot trimming was applied when >80% of berries changed colour, a reduction of Brix was obtained without a negative impact on berry anthocyanins concentration. We conclude that in cases when undesirably high sugar concentrations at harvest are expected, severe shoot trimming at 80% veraison may effectively be used in order to obtain moderate sugar concentration in berries together with the adequate phenolic composition.

New disease-resistant grapevine varieties response to drought under a semi-arid climate

In many regions, climate change leads to an increase in air temperature combined with a reduction of rainfall, intensifying climatic demand and water deficits (WD) (Cardell et al. 2019), which in turn may negatively impact grapevine development, yield and grape composition (Santos et al. 2020). In addition, climate change may also increase disease pressure, leading to further yield and quality losses, besides increasing costs due to increased vineyard spraying (Santos et al. 2020) and reducing viticulture acceptability by consumers (Guichard et al. 2017). Adopting new resistant varieties appears as a promising long-term solution to better manage vine protection, but unfortunately little is known regarding their behavior in front of WD.

Does bioprotection by adding yeasts present antioxydant properties?

AIM: The bioprotection by adding yeasts is an emerging sulfur dioxide alternative. Sulfur dioxide is a chemical adjuvant used for its antiseptic, antioxidasic and antioxidant properties. Faced with the societal demand (Pérès et al., 2018) and considering the proven human risks associated with the total doses of sulfur dioxide (SO2) present in food requirements (García‐Gavín et al., 2012), the reduction of this chemical input is undeniable.