Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Abstract

Aim: Through machine-learning modelling of plant water status from environmental characteristics, this work aims to develop a model able to predict grape phenolic composition in space and time to guide selective harvest decisions at the estate scale.

Methods and Results: Work was conducted during two consecutive seasons in a ~40ha (100ac) premium wine estate located in the Adelaida District AVA of Paso Robles, CA, USA. The vineyard topography was very diverse, with a large variation in slope grade (0-30%) and exposure (0-359). One hundred experimental units were identified by a maximum dissimilarity sampling algorithm based on environmental attributes derived from a digital elevation model and a soil map. Reflecting the estate varietal distribution, ~70% were Cabernet-Sauvignon units, 20% Cabernet-Franc, and 10% Petit-Verdot units grafted on 1103P or 420A (~50-50%). Grapevine water status was monitored by weekly measurements of stem water potentials, Ψstem, and analysis of carbon isotope discrimination of grape musts, δ13C, at harvest. The grape composition during ripening was assessed by measuring total soluble solids, titratable acidity, and pH of musts and by a comprehensive assessment of skin phenolic composition with HPLC-DAD. Additional field measurements included shoot-count and yield assessment. Vegetation indexes were derived from canopy reflectance obtained from ~3m resolution CubeSat satellites. Irrigation amounts were provided by the grower, and weather data were obtained from three on-site stations. 

Grapevine Ψstem was modelled from weather data (temperature, relative humidity, rainfall), irrigation amounts, vegetation indexes, topographic attributes, soil type using a gradient-boosting-machine algorithm. The model was able to predict plant water status with <0.1 MPa of error (estimated as root mean squared error in a cross-validation procedure). Significant differences in water status were observed between rootstocks and main environmental drivers were slope grade and aspect (i.e. exposure). External validation of the model was carried out by correlating predictions with δ13C. The model allowed obtaining high-resolution daily mapping of Ψstem at the estate scale. Time-series of grapevine Ψstem were significantly correlated with the content of total soluble solids of musts, grape anthocyanin amounts, and the ratio of tri-hydroxylated to di-hydroxylated compounds at harvest and mapped. Spatial-clustering of grape anthocyanin composition was obtained from Ψstem model-estimates and used to guide harvest selectively. 

Conclusion: 

Grapevine water status confirmed to be an important driver in the variability of grape composition, even though the vineyard was irrigated. Variability in water status was related to environmental attributes (slope, aspect, incoming radiation) and the machine-learning approach proved to be useful to predict and understand plant-environment interactions and effects on grape composition in a varied and large dataset.

Significance and Impact of the Study: Vineyards are often located on slopes and accurate modelling of grapevine water status in hillslope conditions is a challenging task. This research demonstrates for the first time that it is possible to obtain daily estimates of grapevine water status at the estate scale by re-elaborating routine measurements with machine-learning technologies. This information can be used to drive selective harvest decisions and clustering within-vineyard variability at the estate scale to easily implement selective harvest decisions.

DOI:

Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video

Authors

Luca Brillante

California State University Fresno, Fresno, United States

Contact the author

Keywords

Grapevine water status, machine learning, phenolic composition

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Characterization of Brettanomyces bruxellensis biofilm, a resistance strategy to persist in wine-related environments

AIM: Biofilm is a resistance mechanism deployed by microorganisms to adapt to stresses, leading to their persistence in the environment. In the case of Brettanomyces bruxellensis, a wine spoilage yeast, knowledge about its capacity to form biofilm remains limited although this potential strategy could explain its recurring presence in cellars.

Territoire, terroir et marché du vin à la production

Work aimed at understanding the relationship between a terroir, in the agronomic sense, and the physico-chemical characteristics of grapes or wine are numerous today, as evidenced by the program of this symposium. But for an economist, the central question remains to know how the terroir can intervene in the construction of the economic value of wine and in the differentiation of its prices. Is the terroir effect recognized by the end consumer or is it only an internal adjustment variable in the production systems? Through which indicators can this terroir effect be managed by the various operators in the sector? In the end, isn’t it better to invoke a “territorial effect” that the actors can build, and of which the terroir would be one of the possible components?

Impact of malolactic fermentation on volatile composition and sensory properties of white and rosé wine from the greek variety moschofilero

Moschofilero is a native grape variety, classified as a ‘gris’ type variety, that is cultivated in PDO Mantineia, Peloponissos, Greece. It is used for the production of both white and rosé wines. Due to high altitude of the vineyards, the harvest is done by mid October, and many vintages are characterised by high acidities and low pH values.

Circular economy strategies to reintegrate grape pomace from cv. Lagrein into the food chain

The project REALISM (regionality and circular economy in food products to counteract the Metabolic Syndrome (M.S.)) was initiated to develop antioxidant-rich food products with the ability to reduce the risk of developing the M.S.

The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS)

 The manipulation of the genetic basis controlling grapevine adaptation and phenotypic plasticity can be performed either by classical genetics or biotechnologies.