Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Building new temperature indexes for a local understanding of grapevine physiology

Building new temperature indexes for a local understanding of grapevine physiology

Abstract

Aim: Temperature corresponds to one of the main terroir factors influencing grapevine physiology, primarily evidenced by its impact on phenology. Numerous studies have aimed at expressing time with thermal indices such as growing degree days (GDD) and have thus enabled a better modelling of grapevine responses to temperature. However, some works have highlighted the need to adapt GDD to the considered pedo-climatic context and grape variety or to refine the time step at which temperature variables are computed. The present study aims to investigate the hypothesis that grapevine response to temperature depends on the production context, ie. plant material, pedo-climate, topography, orientation and cultural practices, and that thermal indices should then be locally adapted. 

Methods and Results: GDD with different base temperatures but also other indices based on other algebraic equations on daily average temperature were calculated starting from the bud break date and using data from weather stations located in the Bordeaux region (France), California (USA) and Israel. The dates of flowering and veraison were expressed according to each of these indices for three commercial blocks located near each weather station. For each block, the relative differences in the flowering and veraison dates were calculated for any couple of years and summed squared. The number of studied years considered ranged from fifteen to five depending on the blocks. The relative difference between two dates was computed as their difference in index-related degrees divided by the average index-related amount of degrees to reach veraison. The thermal index which minimizes the sum of the relative differences of flowering and veraison dates for all the years of the same block is considered to best illustrate the temperature local effect. As such, this local effect includes both grapevine physiological response to temperature and the difference between the weather station data and the conditions actually experienced by the vines.

Dates of flowering and veraison of all years coincide when expressed in a given thermal index for most of the blocks. The hypothesis whereby temperature is a predominant factor in grapevine phenology may thus be confirmed. Moreover, the thermal indices allowing such an adjustment are different between blocks of different locations, thus demonstrating that temperature effects on grapevine phenology are better captured when considered according to locally calibrated indices. 

Conclusion:

Temperature effects may be better captured by different thermal indices depending on the local context. 

Significance and Impact of the Study: In a precision viticulture context, a growing access to local and higher resolution weather data and grapevine observations enables models to be used locally. The present study therefore corresponds to a first attempt to highlight the importance of calibrating a local thermal index to improve the performance and operational relevance of any temperature-based model.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Cécile Laurent1,2,3*, Thibaut Scholasch1, Bruno Tisseyre3, Aurélie Metay2

1Fruition Sciences, Montpellier, France
SYSTEM, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
3ITAP, Univ. Montpellier, Institut Agro, INRAE, Montpellier, France

Contact the author

Keywords

Local thermal index, precision viticulture, terroir factors

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Breeding grapevines for disease and low temperature tolerance: the U.S. perspective

Most grape scion cultivars grown around the world are derived from a single species, Vitis vinifera. Yet, the proportion of interspecific hybrids is increasing for a variety of reasons, including resistance to abiotic stresses such as low temperatures; societal, economic and environmental pressures to reduce pesticide usage; and to add a greater range of flavors to new table grape cultivars.

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

Phenolic composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Grape and wine phenolic compounds have been shown to be highly related to both wine quality (color, flavor, and taste) and health-promoting properties (antioxidant and cardioprotective, among others). The aim of this work was to evaluate and compare the phenolic contents of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain vintage 2022. In addition, the phenolic profiles of the Portuguese wines from three vintages (2020, 2021, 2022) was compared.

Metodología para la zonificación de áreas vitícolas: aplicación en un area modelo del Penedés

Se propone una metodología para la zonificación del viñedo, a partir de las características climáticas, edáficas y geomorfológicas, en una área de 3700 ha del Penedés

NADES extraction of anthocyanins derivatives from grape pomace

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process