Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Building new temperature indexes for a local understanding of grapevine physiology

Building new temperature indexes for a local understanding of grapevine physiology

Abstract

Aim: Temperature corresponds to one of the main terroir factors influencing grapevine physiology, primarily evidenced by its impact on phenology. Numerous studies have aimed at expressing time with thermal indices such as growing degree days (GDD) and have thus enabled a better modelling of grapevine responses to temperature. However, some works have highlighted the need to adapt GDD to the considered pedo-climatic context and grape variety or to refine the time step at which temperature variables are computed. The present study aims to investigate the hypothesis that grapevine response to temperature depends on the production context, ie. plant material, pedo-climate, topography, orientation and cultural practices, and that thermal indices should then be locally adapted. 

Methods and Results: GDD with different base temperatures but also other indices based on other algebraic equations on daily average temperature were calculated starting from the bud break date and using data from weather stations located in the Bordeaux region (France), California (USA) and Israel. The dates of flowering and veraison were expressed according to each of these indices for three commercial blocks located near each weather station. For each block, the relative differences in the flowering and veraison dates were calculated for any couple of years and summed squared. The number of studied years considered ranged from fifteen to five depending on the blocks. The relative difference between two dates was computed as their difference in index-related degrees divided by the average index-related amount of degrees to reach veraison. The thermal index which minimizes the sum of the relative differences of flowering and veraison dates for all the years of the same block is considered to best illustrate the temperature local effect. As such, this local effect includes both grapevine physiological response to temperature and the difference between the weather station data and the conditions actually experienced by the vines.

Dates of flowering and veraison of all years coincide when expressed in a given thermal index for most of the blocks. The hypothesis whereby temperature is a predominant factor in grapevine phenology may thus be confirmed. Moreover, the thermal indices allowing such an adjustment are different between blocks of different locations, thus demonstrating that temperature effects on grapevine phenology are better captured when considered according to locally calibrated indices. 

Conclusion:

Temperature effects may be better captured by different thermal indices depending on the local context. 

Significance and Impact of the Study: In a precision viticulture context, a growing access to local and higher resolution weather data and grapevine observations enables models to be used locally. The present study therefore corresponds to a first attempt to highlight the importance of calibrating a local thermal index to improve the performance and operational relevance of any temperature-based model.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Cécile Laurent1,2,3*, Thibaut Scholasch1, Bruno Tisseyre3, Aurélie Metay2

1Fruition Sciences, Montpellier, France
SYSTEM, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
3ITAP, Univ. Montpellier, Institut Agro, INRAE, Montpellier, France

Contact the author

Keywords

Local thermal index, precision viticulture, terroir factors

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Antociani ed acidi cinnamici per la caratterizzazione di vitigni in zone diverse della Toscana

The phenolic compounds (cathechins, cynnamic acids, anthocyanidins) in wines made from 6 vine-varieties (Sangiovese, Cabernet S., Nero d’Avola, Foglia Tonda, Pinot N., Mazzese) grown in 4 different pedoclimatic zones of Tuscany (Arezzo, Grosseto, Pisa and Lucca) have been analyzed by HPLC.

Mixed starters Schizosaccharomyces japonicus/Saccharomyces cerevisiae as a novel tool to improve the aging stability of Sangiovese wines

In the present work Schizosaccharomyces japonicus and Saccharomyces cerevisiae were inoculated simultaneously or in sequence in mixed fermentation trials with the aim of testing their ability to improve the overall quality of red wine

Impact of yeast strains on wine profiles of nine PIWIs: focus on volatile thiols

Disease resistant grapevine varieties (PIWI) are increasingly important for sustainable wine production, yet the impact of different yeasts on their wine profiles remains poorly studied. In this study, nine white interspecies varieties (i.e., caladris blanc, fleurtai, hibernal, johanniter, muscaris, sauvignon kretos, soreli, souvignier gris, and voltis) grown at the faculty of agriculture, university of Zagreb (Croatia) were vinified with three different saccharomyces cerevisiae yeasts (control strain, zymaflore x5, and zymaflore xarom).

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

Flavonol and anthocyanin potential of Spanish minority grapes and its relationship with wine colour

Global climate change is currently affecting vine phenology and causing a decoupling between technological and phenolic maturity of the grapes [1]. Wine industry has to face the challenge of making quality wines from grapes with an unbalanced phenolic composition.