Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Gamma-ray spectrometry In Burgundy vineyard for high resolution soil mapping

Gamma-ray spectrometry In Burgundy vineyard for high resolution soil mapping

Abstract

Aim: A soil mapping methodology based on gamma-ray spectrometry and soil sampling has been applied for the first time in Burgundy. The purpose of this innovative high-resolution mapping is to delimit soil areas, to define elementary units of soil for terroir characterization and vineyard management. The added value of this integrated approach is a continuous geophysical mapping of the soil with an investigation depth of 60cm.

Methods and Results: The principle of the gamma-ray spectrometry is a record, by a crystal of Cesium Iodide, of the natural radiation produced in soils (U, K, Th, Cs). The interpretation required the calibration of the natural gamma ray using soil samples description and analysis. The agricultural practices feedback of the winegrower is also fundamental for the interpretation.

Our soil mapping approach depends on the surface of the study area. For a parcel, the sensor is carried on a man’s back. For an entire vineyard, the sensor is fixed on a drone. This low elevation does not impact significantly on the intensity of the signal.

Conclusions:

We have investigated 18 parcels of the Domaine de la Tour Bajole (Saint Maurice-les-Couches), Domaine de la Chapelle (Pouilly-Fuissé), Domaine du Mas des Tines and Sources d’Agapé (Saint-Amour). These parcels are representative of the soil diversity of this region: soils issues from granites, granitic arena, Triassic clays and sandstones, Jurassic marls and limestones and deep argillaceous soils. The gamma-ray signal analysis allowed to discriminate and map these seven soil types, as well as colluvium and anthropic features.

Significance Impact of the Study: The application of gamma-ray spectrometry for vineyard soil characterization has been initiated in South Africa by Mlwilo (2010) (sensor fixed on an all-terrain vehicle, to investigate soils issued from shale, granitic arena and metamorphic rocks). Our study is the first use of gamma-ray spectrometry for vineyard mapping in France. It confirms the relevance of this integrated method for improving the resolution of soil mapping. The resolution is metric, and this tool separates elementary soil units at the scale of the sub-parcel (“sub-climat”). Today, the miniaturization of sensors and the carrying capacity of drones allows quick gamma-ray spectrometry to capture new high-resolution soil heterogeneity mapping on large areas.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Christophe Rigollet1*, Jean-François Buoncristiani3, Emmanuel Chevigny2, Julien Herrero4, Philippe Kundrat5, Emmanuel Pizzo4, Eric Portier1, Françoise Vannier2

1CVA, 105 Avenue Doumer, 92500 Rueil Malmaison, France
2ADAMA, 1 chemin de la Rente Neuve, 21160 FLAVIGNEROT, France
3Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
4INFOGEO, 46 avenue des frères lumière 78190 Trappes, France
5Kundrat & Fils, 392 Ancienne route de Bouze, 21200 Beaune, France

Contact the author

Keywords

Vineyard soil characterization, gamma-ray spectrometry, high-resolution sol mapping

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

The Ribera del Duero Designation of Origin (DO) has acquired great recognition during the last decades, being considered one of the highest quality wine producing regions in the world. This DO has grown from 6,460 ha of vineyards officially registered in 1985 to approximately 21,500 ha in 2013. The total grape production stands at around 90 million kg, with an average yield that approaches nearly 4,500 kg/ha. Most vineyards are cultivated under rainfed conditions.

Impact of climate change on the aroma of red wines: a focus on dried fruit aromas

The volatile composition of grapes (free and bound forms) contributes greatly to the varietal aroma and quality of wines. Several agronomical parameters affect grapes composition and wine quality: maturity level at harvest, water status, and the intensity of sun exposure.

La viticulture durable: concept et application aux terroirs viticoles

Evoquer la notion de durabilité pour la vigne, plante multimillénaire, et le vin, tous deux intimement liés aux origines de notre civilisation, peut paraître un non-sens.

Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Exposure to solar radiation affects berry composition through photomorphogenesis or changes in temperature. Flavonol synthesis is upregulated by UV‐B radiation

Aroma composition of young and aged Lugana and Verdicchio

AIM Verdicchio and Lugana are two Italian white wines produced in the Marche and Garda lake regions respectively. They are however obtained using grape varieties sharing the same genetic background, locally known as Verdicchio in Marche and Trebbiano di Soave in Garda. Anecdotal evidence suggests that these two wine types exhibit distinctive aroma features. The aim of this work was to explore the existence of a recognizable odour profile for Lugana and Verdicchio, and whether specific aroma chemical markers could be identified. METHODS 13 commercial wines, 6 Lugana and 7 Verdicchio were used. Sensory analysis was done using sorting task methodology, assessing only odor similarities. A total of 53 volatile compounds were identified and quantified GC-MS analysis. Aging behaviors were also evaluated after an accelerated aging at 40 ° C for 3 months. RESULTS HCA analysis of sorting task data identified indeed two groups: one characterized by floral and minty notes and mostly associated with Lugana wines, the other characterized by spicy and toasted aromas and mostly associated with Verdicchio. From a chemical point of view, major differences between the two wines types were observed for cis-3-hexenol, methionol, phenylethyl alcohol, and geraniol.