Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Gamma-ray spectrometry In Burgundy vineyard for high resolution soil mapping

Gamma-ray spectrometry In Burgundy vineyard for high resolution soil mapping

Abstract

Aim: A soil mapping methodology based on gamma-ray spectrometry and soil sampling has been applied for the first time in Burgundy. The purpose of this innovative high-resolution mapping is to delimit soil areas, to define elementary units of soil for terroir characterization and vineyard management. The added value of this integrated approach is a continuous geophysical mapping of the soil with an investigation depth of 60cm.

Methods and Results: The principle of the gamma-ray spectrometry is a record, by a crystal of Cesium Iodide, of the natural radiation produced in soils (U, K, Th, Cs). The interpretation required the calibration of the natural gamma ray using soil samples description and analysis. The agricultural practices feedback of the winegrower is also fundamental for the interpretation.

Our soil mapping approach depends on the surface of the study area. For a parcel, the sensor is carried on a man’s back. For an entire vineyard, the sensor is fixed on a drone. This low elevation does not impact significantly on the intensity of the signal.

Conclusions:

We have investigated 18 parcels of the Domaine de la Tour Bajole (Saint Maurice-les-Couches), Domaine de la Chapelle (Pouilly-Fuissé), Domaine du Mas des Tines and Sources d’Agapé (Saint-Amour). These parcels are representative of the soil diversity of this region: soils issues from granites, granitic arena, Triassic clays and sandstones, Jurassic marls and limestones and deep argillaceous soils. The gamma-ray signal analysis allowed to discriminate and map these seven soil types, as well as colluvium and anthropic features.

Significance Impact of the Study: The application of gamma-ray spectrometry for vineyard soil characterization has been initiated in South Africa by Mlwilo (2010) (sensor fixed on an all-terrain vehicle, to investigate soils issued from shale, granitic arena and metamorphic rocks). Our study is the first use of gamma-ray spectrometry for vineyard mapping in France. It confirms the relevance of this integrated method for improving the resolution of soil mapping. The resolution is metric, and this tool separates elementary soil units at the scale of the sub-parcel (“sub-climat”). Today, the miniaturization of sensors and the carrying capacity of drones allows quick gamma-ray spectrometry to capture new high-resolution soil heterogeneity mapping on large areas.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Christophe Rigollet1*, Jean-François Buoncristiani3, Emmanuel Chevigny2, Julien Herrero4, Philippe Kundrat5, Emmanuel Pizzo4, Eric Portier1, Françoise Vannier2

1CVA, 105 Avenue Doumer, 92500 Rueil Malmaison, France
2ADAMA, 1 chemin de la Rente Neuve, 21160 FLAVIGNEROT, France
3Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
4INFOGEO, 46 avenue des frères lumière 78190 Trappes, France
5Kundrat & Fils, 392 Ancienne route de Bouze, 21200 Beaune, France

Contact the author

Keywords

Vineyard soil characterization, gamma-ray spectrometry, high-resolution sol mapping

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Study of varietal wines from the qualified origin denomination Rioja (Spain): analysis of wine colour, polysaccharides, polyphenols and biogenic amines and amino acides 

The cultivar with a greater oenological potential was ‘Monastel’, which showed overall better values than ‘Tempranillo’ in colour intensity, total polyphenol index, wine colour, total anthocyanins, resveratrol and gallic acid.

Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Le terroir peut être défini comme un écosystème dans lequel la vigne interagit avec le climat et le sol et dont la résultante est le vin.

Long-term drought resilience of traditional red grapevine varieties from a semi-arid region

In recent decades, the scarcity of water resources in agriculture in certain areas has been aggravated by climate change, which has caused an increase in temperatures, changes in rainfall patterns, as well as an increase in the frequency of extreme phenomena such as droughts and heat waves. Although the vine is considered a drought-tolerant specie, it has to satisfy important water requirements to complete its cycle, which coincides with the hottest and driest months. Achieving sustainable viticulture in this scenario requires high levels of efficiency in the use of water, a scarce resource whose use is expected to be severely restricted in the near future. In this regard, the use of drought-tolerant varieties that are able to maintain grape yield and quality could be an effective strategy to face this change. During three consecutive seasons (2018-2020) the behavior in rainfed regime of 13 traditional red grapevine varieties of the Spain central region was studied. These varieties were cultivated in a collection at Centro de Investigación de la Vid y el Vino de Castilla-La Mancha (IVICAM-IRIAF) located in Tomelloso (Castilla-La Mancha, Spain). Yield components (yield, mean bunch and berry weight, pruning weight), physicochemical parameters of the musts (brix degree, total acidity, pH) and some physiological parameters related with water stress during ripening period (δ13C, δ18O) were analysed. The application of different statistical techniques to the results showed the existence of significant differences between varieties in their response to stressful conditions. A few varieties highlighted for their high ability to adapt to drought, being able to maintain high yields due to their efficiency in the use of water. In addition, it was possible quantify to what extent climate can be a determinant in the δ18O of musts under severe water stress conditions.

Managing extraction of colour, tannin and methoxypyrazines in Pinot noir grapes treated by leaf removal

Managing extraction of tannins and green aroma compounds attributed from methoxypyrazines in winemaking is crucial for producing high quality Pinot noir wine. This study1 investigated the impact of leaf removal on concentrations of anthocyanins, tannins, and methoxypyrazines in Pinot noir grapes and resultant wines.