Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Gamma-ray spectrometry In Burgundy vineyard for high resolution soil mapping

Gamma-ray spectrometry In Burgundy vineyard for high resolution soil mapping

Abstract

Aim: A soil mapping methodology based on gamma-ray spectrometry and soil sampling has been applied for the first time in Burgundy. The purpose of this innovative high-resolution mapping is to delimit soil areas, to define elementary units of soil for terroir characterization and vineyard management. The added value of this integrated approach is a continuous geophysical mapping of the soil with an investigation depth of 60cm.

Methods and Results: The principle of the gamma-ray spectrometry is a record, by a crystal of Cesium Iodide, of the natural radiation produced in soils (U, K, Th, Cs). The interpretation required the calibration of the natural gamma ray using soil samples description and analysis. The agricultural practices feedback of the winegrower is also fundamental for the interpretation.

Our soil mapping approach depends on the surface of the study area. For a parcel, the sensor is carried on a man’s back. For an entire vineyard, the sensor is fixed on a drone. This low elevation does not impact significantly on the intensity of the signal.

Conclusions:

We have investigated 18 parcels of the Domaine de la Tour Bajole (Saint Maurice-les-Couches), Domaine de la Chapelle (Pouilly-Fuissé), Domaine du Mas des Tines and Sources d’Agapé (Saint-Amour). These parcels are representative of the soil diversity of this region: soils issues from granites, granitic arena, Triassic clays and sandstones, Jurassic marls and limestones and deep argillaceous soils. The gamma-ray signal analysis allowed to discriminate and map these seven soil types, as well as colluvium and anthropic features.

Significance Impact of the Study: The application of gamma-ray spectrometry for vineyard soil characterization has been initiated in South Africa by Mlwilo (2010) (sensor fixed on an all-terrain vehicle, to investigate soils issued from shale, granitic arena and metamorphic rocks). Our study is the first use of gamma-ray spectrometry for vineyard mapping in France. It confirms the relevance of this integrated method for improving the resolution of soil mapping. The resolution is metric, and this tool separates elementary soil units at the scale of the sub-parcel (“sub-climat”). Today, the miniaturization of sensors and the carrying capacity of drones allows quick gamma-ray spectrometry to capture new high-resolution soil heterogeneity mapping on large areas.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Christophe Rigollet1*, Jean-François Buoncristiani3, Emmanuel Chevigny2, Julien Herrero4, Philippe Kundrat5, Emmanuel Pizzo4, Eric Portier1, Françoise Vannier2

1CVA, 105 Avenue Doumer, 92500 Rueil Malmaison, France
2ADAMA, 1 chemin de la Rente Neuve, 21160 FLAVIGNEROT, France
3Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
4INFOGEO, 46 avenue des frères lumière 78190 Trappes, France
5Kundrat & Fils, 392 Ancienne route de Bouze, 21200 Beaune, France

Contact the author

Keywords

Vineyard soil characterization, gamma-ray spectrometry, high-resolution sol mapping

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Are all red wines equals regarding their vulnerability to Brettanomyces bruxellensis ?

Odours deemed harmful by the consumer and described as “stable”, “horse sweat” or “burnt plastic” can be found in wines. The responsible molecules are volatile phenols, produced by a spoilage yeast: brettanomyces bruxellensis. This species is particularly well adapted to the wine environment and can resists many stresses such as a high alcohol level, a low ph or high levels of SO2, more or less efficiently depending on the strain considered.

Essential oil vapor triggers resistance pathways in Vitis vinifera and blocks plasmopora viticola infection

The amount of synthetic pesticides applied in viticulture is relatively high compared to other agricultural crops, due to the high sensitivity of grapevine to diseases such as downy mildew (Plasmopora viticola). Alternatives to reduce fungicides are utterly needed to promote a sustainable vineyard-ecosystems and meet consumer acceptance. Essential oils (EOs) are amongst the most promising natural plant protection agents and have shown their antifungal properties previously. However, the efficiency of EOs depends highly on timing and application technique.

Effect of culture and familiarity on wine perception: a study with spanish and british wine experts

Wine perception results from the interaction between the wine and its intrinsic and extrinsic characteristics and the experience [1], background and beliefs of the consumer [2,3]. Among all of the factors affecting wine perception, in this study we focused on culture and cognitive processes, working under the hypothesis that higher familiarity with wines would induce higher perceived quality. Furthermore, we hypothesised that culture would influence the verbalisation of wine properties associated with the different experiences of consumers from different cultures.

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

Characterization of winegrape berries’ composition on sorting tables using hyperspectral imaging and AI

Comprehensive evaluation of grape composition at winery receiving areas often requires multiple measurements to ensure representativeness, as well as the use of analytical techniques that are time-consuming and involve sample preparation.