Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Gamma-ray spectrometry In Burgundy vineyard for high resolution soil mapping

Gamma-ray spectrometry In Burgundy vineyard for high resolution soil mapping

Abstract

Aim: A soil mapping methodology based on gamma-ray spectrometry and soil sampling has been applied for the first time in Burgundy. The purpose of this innovative high-resolution mapping is to delimit soil areas, to define elementary units of soil for terroir characterization and vineyard management. The added value of this integrated approach is a continuous geophysical mapping of the soil with an investigation depth of 60cm.

Methods and Results: The principle of the gamma-ray spectrometry is a record, by a crystal of Cesium Iodide, of the natural radiation produced in soils (U, K, Th, Cs). The interpretation required the calibration of the natural gamma ray using soil samples description and analysis. The agricultural practices feedback of the winegrower is also fundamental for the interpretation.

Our soil mapping approach depends on the surface of the study area. For a parcel, the sensor is carried on a man’s back. For an entire vineyard, the sensor is fixed on a drone. This low elevation does not impact significantly on the intensity of the signal.

Conclusions:

We have investigated 18 parcels of the Domaine de la Tour Bajole (Saint Maurice-les-Couches), Domaine de la Chapelle (Pouilly-Fuissé), Domaine du Mas des Tines and Sources d’Agapé (Saint-Amour). These parcels are representative of the soil diversity of this region: soils issues from granites, granitic arena, Triassic clays and sandstones, Jurassic marls and limestones and deep argillaceous soils. The gamma-ray signal analysis allowed to discriminate and map these seven soil types, as well as colluvium and anthropic features.

Significance Impact of the Study: The application of gamma-ray spectrometry for vineyard soil characterization has been initiated in South Africa by Mlwilo (2010) (sensor fixed on an all-terrain vehicle, to investigate soils issued from shale, granitic arena and metamorphic rocks). Our study is the first use of gamma-ray spectrometry for vineyard mapping in France. It confirms the relevance of this integrated method for improving the resolution of soil mapping. The resolution is metric, and this tool separates elementary soil units at the scale of the sub-parcel (“sub-climat”). Today, the miniaturization of sensors and the carrying capacity of drones allows quick gamma-ray spectrometry to capture new high-resolution soil heterogeneity mapping on large areas.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Christophe Rigollet1*, Jean-François Buoncristiani3, Emmanuel Chevigny2, Julien Herrero4, Philippe Kundrat5, Emmanuel Pizzo4, Eric Portier1, Françoise Vannier2

1CVA, 105 Avenue Doumer, 92500 Rueil Malmaison, France
2ADAMA, 1 chemin de la Rente Neuve, 21160 FLAVIGNEROT, France
3Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
4INFOGEO, 46 avenue des frères lumière 78190 Trappes, France
5Kundrat & Fils, 392 Ancienne route de Bouze, 21200 Beaune, France

Contact the author

Keywords

Vineyard soil characterization, gamma-ray spectrometry, high-resolution sol mapping

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Can early defoliation improve fruit composition of Tempranillo grapevines in the semi-arid terroir of Utiel-Requena, Spain?

Early defoliation has been found a useful tool to reduce cluster compactness and to improve fruit composition in vigorous sites of different viticultural areas. Our objective was to test the usefulness

Chemometric profiling of Pinot noir wine from south tyrol as a tool to reach wine style goals

AIM: Pinot Noir (PN) wines produced in South Tyrol were profiled with the aim to provide guidelines for the oenologist to reach specific winemaking goals in terms of typicity and quality.

Comparison of destructive and non-destructive measurements of table grape berries to assess quality parameters using spectroscopy

The quality of table grapes is critically influenced by several parameters, including sugar content, acidity, firmness, and overall appearance.

High and extreme high temperature effects on shiraz berry composition 

Climate change is leading to a rise in average temperature and in the frequency and severity of heatwaves, and is already significantly disturbing grapevine phenology and berry composition. With the evolution of the weather of Australian grape growing regions that are already warm and hot, flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted. These compounds include anthocyanins and tannins which contribute substantially to grape and wine quality. The goals of this project were to determine if berry tannin accumulation is sensitive to high temperature and to enhance knowledge on upper temperature limits for viable wine production, in turn informing critical timing for mitigation strategies.