Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Using image analysis for assessing downy mildew severity in grapevine

Using image analysis for assessing downy mildew severity in grapevine

Abstract

Aim: Downy mildew is a crucial disease in viticulture. In-field evaluation of downy mildew has been classically based on visual inspection of leaves and fruit. Nevertheless, non-invasive sensing technologies could be used for disease detection in grapevine. The aim of this study was to assess downy mildew severity in grapevine leaves using machine vision.

Methods and Results: Leaf disks of the cv Pinot Noir (Vitis vinifera L.) were placed in Petri dishes with the abaxial side up. Plasmopara viticola sporangia were collected from infected leaves in the vineyard and used for the experimental inoculation of the leaf disks in laboratory. Images of Petri dishes including different levels of downy mildew infection were taken using a digital RGB camera. Machine vision techniques were used to estimate downy mildew severity (percentage of pixels representing visual symptoms) on the leaves. The symptoms were evaluated by eight experts, visually estimating the percentage of area showing sporulation. Considering the average evaluation of the experts, the assessment obtained by the new developed algorithm based on computer vision was represented as a R2value of 0.82 and RMSE of 14.34%.

Conclusions:

The results show a strong correlation between the severity computed by machine vision and the visual assessments, opening the possibility of the automated evaluation of downy mildew severity using non-invasive sensors.

Significance and Impact of the Study: The results indicated that machine vision can be applied for assessing and quantify visual symptoms of downy mildew in grapevine

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Inés Hernández1, Salvador Gutiérrez2, Sara Ceballos1, Miriam Alonso1, Umberto Calvo1, Ignacio Barrio1, Fernando Palacios1, Silvia Toffolatti3, Giuliana Maddalena3, Javier Tardaguila1*

1Televitis Research Group. University of La Rioja, 26007 Logroño, Spain
2Department of Computer Science and Engineering, University of Cádiz, 11519 Puerto Real, Spain
3Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20133, Milano, Italy

Contact the author

Keywords

Grapevine, downy mildew, non-invasive phenotyping tools, imaging, machine vision

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Tracking the origin of Tempranillo Tinto through whole genome resequencing and high-throughput genotyping  

Grapevine cultivars are vegetatively propagated to maintain their varietal characteristics. This process of multiplication leads to spontaneous somatic mutations that can eventually generate a variant phenotype, of potential interest for cultivar improvement and innovation. However, regardless their phenotypic effect, somatic mutations stack in the genome, and they can be used to reveal the origin and dissemination history of ancient cultivars. Here, a stringent somatic variant calling over whole genome resequencing data from 35 ‘Tempranillo Tinto’ clones or old vines from seven Iberian winemaking regions revealed 135 single nucleotide variations (SNVs) shared by some of the clonal lines.

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

Influence of pre-fermentative steps on varietal thiol precursors

The content of 3-sulfanyl-1-hexanol and its acetate ester in wine is affected by a number of factors, including the concentration of its precursors S-3-(hexan-1-ol)-L-glutathione (G-3SH),

Method for the evaluation of climatic changes envisaging the protection of grape-growing terroirs: the Géoviticulture MCC system in the evaluation of the potential impact of the construction of hydroelectric power plants on viticulture

La recherche, conduite en 2002, a envisagé l’estimation, a priori, de l’effet du changement mesoclimatique sur le potentiel qualitatif de la région viticole de la Serra Gaúcha (Vallée du Rio das Antas) – Brésil, en fonction de la construction de 3 usines hydroélectriques.