Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Using image analysis for assessing downy mildew severity in grapevine

Using image analysis for assessing downy mildew severity in grapevine

Abstract

Aim: Downy mildew is a crucial disease in viticulture. In-field evaluation of downy mildew has been classically based on visual inspection of leaves and fruit. Nevertheless, non-invasive sensing technologies could be used for disease detection in grapevine. The aim of this study was to assess downy mildew severity in grapevine leaves using machine vision.

Methods and Results: Leaf disks of the cv Pinot Noir (Vitis vinifera L.) were placed in Petri dishes with the abaxial side up. Plasmopara viticola sporangia were collected from infected leaves in the vineyard and used for the experimental inoculation of the leaf disks in laboratory. Images of Petri dishes including different levels of downy mildew infection were taken using a digital RGB camera. Machine vision techniques were used to estimate downy mildew severity (percentage of pixels representing visual symptoms) on the leaves. The symptoms were evaluated by eight experts, visually estimating the percentage of area showing sporulation. Considering the average evaluation of the experts, the assessment obtained by the new developed algorithm based on computer vision was represented as a R2value of 0.82 and RMSE of 14.34%.

Conclusions:

The results show a strong correlation between the severity computed by machine vision and the visual assessments, opening the possibility of the automated evaluation of downy mildew severity using non-invasive sensors.

Significance and Impact of the Study: The results indicated that machine vision can be applied for assessing and quantify visual symptoms of downy mildew in grapevine

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Inés Hernández1, Salvador Gutiérrez2, Sara Ceballos1, Miriam Alonso1, Umberto Calvo1, Ignacio Barrio1, Fernando Palacios1, Silvia Toffolatti3, Giuliana Maddalena3, Javier Tardaguila1*

1Televitis Research Group. University of La Rioja, 26007 Logroño, Spain
2Department of Computer Science and Engineering, University of Cádiz, 11519 Puerto Real, Spain
3Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20133, Milano, Italy

Contact the author

Keywords

Grapevine, downy mildew, non-invasive phenotyping tools, imaging, machine vision

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

For a phenomenology of terroir. A consumers’ perspective

This study investigates the notion of terroir by applying a phenomenological approach, focusing on the subjective experience of consumers. We will consider how terroir is described by consumers in order to gauge their subjective viewpoint and understand their way of describing and defining this spatiality.

Historical terraced vineyards – heritage and nature conservation strategies

Historical terrace vineyards are simultaneously impressive documents of the human inclination to design, sites for the production of high quality wines and habitats for a rich variety of flora and fauna

VINIoT: Precision viticulture service for SMEs based on IoT sensors network

The main innovation in the VINIoT service is the joint use of two technologies that are currently used separately: vineyard monitoring using multispectral imaging and deployed terrain sensors. One part of the system is based on the development of artificial intelligence algorithms that are feed on the images of the multispectral camera and IoT sensors, high-level information on water stress, grape ripening status and the presence of diseases. In order to obtain algorithms to determine the state of ripening of the grapes and avoid losing information due to the diversity of the grape berries, it was decided to work along the first year 2020 at berry scale in the laboratory, during the second year at the cluster scale and on the last year at plot scale. Different varieties of white and red grapes were used; in the case of Galicia we worked with the white grape variety Treixadura and the red variety Mencía. During the 2020 and 2021 campaigns, multispectral images were taken in the visible and infrared range of: 1) sets of 100 grapes classifying them by means of densimetric baths, 2) individual bunches. The images taken with the laboratory analysis of the ripening stage were correlated. Technological maturity, pH, probable degree, malic acid content, tartaric acid content and parameters for assessing phenolic maturity, IPT, anthocyanin content were determined. It has been calculated for each single image the mean value of each spectral band (only taking into account the pixels of interest) and a correlation study of these values with laboratory data has been carried out. These studies are still provisional and it will be necessary to continue with them, jointly with the training of the machine learning algorithms. Processed data will allow to determine the sensitivity of the multispectral images and select bands of interest in maturation.

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.