Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Using image analysis for assessing downy mildew severity in grapevine

Using image analysis for assessing downy mildew severity in grapevine

Abstract

Aim: Downy mildew is a crucial disease in viticulture. In-field evaluation of downy mildew has been classically based on visual inspection of leaves and fruit. Nevertheless, non-invasive sensing technologies could be used for disease detection in grapevine. The aim of this study was to assess downy mildew severity in grapevine leaves using machine vision.

Methods and Results: Leaf disks of the cv Pinot Noir (Vitis vinifera L.) were placed in Petri dishes with the abaxial side up. Plasmopara viticola sporangia were collected from infected leaves in the vineyard and used for the experimental inoculation of the leaf disks in laboratory. Images of Petri dishes including different levels of downy mildew infection were taken using a digital RGB camera. Machine vision techniques were used to estimate downy mildew severity (percentage of pixels representing visual symptoms) on the leaves. The symptoms were evaluated by eight experts, visually estimating the percentage of area showing sporulation. Considering the average evaluation of the experts, the assessment obtained by the new developed algorithm based on computer vision was represented as a R2value of 0.82 and RMSE of 14.34%.

Conclusions:

The results show a strong correlation between the severity computed by machine vision and the visual assessments, opening the possibility of the automated evaluation of downy mildew severity using non-invasive sensors.

Significance and Impact of the Study: The results indicated that machine vision can be applied for assessing and quantify visual symptoms of downy mildew in grapevine

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Inés Hernández1, Salvador Gutiérrez2, Sara Ceballos1, Miriam Alonso1, Umberto Calvo1, Ignacio Barrio1, Fernando Palacios1, Silvia Toffolatti3, Giuliana Maddalena3, Javier Tardaguila1*

1Televitis Research Group. University of La Rioja, 26007 Logroño, Spain
2Department of Computer Science and Engineering, University of Cádiz, 11519 Puerto Real, Spain
3Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20133, Milano, Italy

Contact the author

Keywords

Grapevine, downy mildew, non-invasive phenotyping tools, imaging, machine vision

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.

Aspect juridiques des terroirs

Le “terroir” est dans tous les discours, les articles, les étiquettes et les publicités. Le voca­ble est en situation d’utilisation euphorique. Indiscutablement l’emploi historique est agri­cole, puis viticole, mais il n’est jamais juridique.

Seasonal vine nutrient dynamics and distribution of shiraz grapevines

The nutrient reserves in the grapevine perennial structure perform a critical role in supplying the grapevine with nutrients

Greek and Cypriot grape varieties as a sustainable solution to mitigate climate change

Aim: The aim of this report is to present evidence on the potential of Greek and Cypriot grape varieties to serve as a sustainable solution to mitigate climate change.

Methods and Results: The work provides a review of recent works involving Greek and Cypriot varieties’ performance under high temperatures and increased dryness.