Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Using image analysis for assessing downy mildew severity in grapevine

Using image analysis for assessing downy mildew severity in grapevine

Abstract

Aim: Downy mildew is a crucial disease in viticulture. In-field evaluation of downy mildew has been classically based on visual inspection of leaves and fruit. Nevertheless, non-invasive sensing technologies could be used for disease detection in grapevine. The aim of this study was to assess downy mildew severity in grapevine leaves using machine vision.

Methods and Results: Leaf disks of the cv Pinot Noir (Vitis vinifera L.) were placed in Petri dishes with the abaxial side up. Plasmopara viticola sporangia were collected from infected leaves in the vineyard and used for the experimental inoculation of the leaf disks in laboratory. Images of Petri dishes including different levels of downy mildew infection were taken using a digital RGB camera. Machine vision techniques were used to estimate downy mildew severity (percentage of pixels representing visual symptoms) on the leaves. The symptoms were evaluated by eight experts, visually estimating the percentage of area showing sporulation. Considering the average evaluation of the experts, the assessment obtained by the new developed algorithm based on computer vision was represented as a R2value of 0.82 and RMSE of 14.34%.

Conclusions:

The results show a strong correlation between the severity computed by machine vision and the visual assessments, opening the possibility of the automated evaluation of downy mildew severity using non-invasive sensors.

Significance and Impact of the Study: The results indicated that machine vision can be applied for assessing and quantify visual symptoms of downy mildew in grapevine

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Inés Hernández1, Salvador Gutiérrez2, Sara Ceballos1, Miriam Alonso1, Umberto Calvo1, Ignacio Barrio1, Fernando Palacios1, Silvia Toffolatti3, Giuliana Maddalena3, Javier Tardaguila1*

1Televitis Research Group. University of La Rioja, 26007 Logroño, Spain
2Department of Computer Science and Engineering, University of Cádiz, 11519 Puerto Real, Spain
3Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20133, Milano, Italy

Contact the author

Keywords

Grapevine, downy mildew, non-invasive phenotyping tools, imaging, machine vision

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Increasing soil organic carbon (SOC) in vineyards enhances soil health with associated benefits for climate change resilience and mitigation.

New tools for a visual analysis of vineyard landscapes?

A vineyard landscape is above all an area observed by someone, that is to say a physical entity perceved and represented by this person.

Volatile and phenolic composition of Agiorgitiko wines from eight different areas of PDO Nemea zone

AIM: Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated red grapewine variety in Greece1 located mainly in Nemea region, the largest PDO zone in Greece2. Although Agiorgitiko is considered as one of the most interesting red grape varieties, not only in Greece3, but also at international level4,5, however, there is a lack of knowledge

Guard cells and stomatal movement reveal early molecular interaction between grapevine cells and esca-associated pathogens

Esca is one of the major grapevine trunk diseases that cause vineyards decline and important economic losses in vineyards.

The informative potential of remote and proximal sensing application on vertical- and overhead-trained vineyards in Northeast Italy

The application of remote and proximal sensing in viticulture have been demonstrated as a fast and efficient method to monitor vegetative and physiological parameters of grapevines. The collection of these parameters could be highly valuable to derive information on associated yield and quality traits in the vineyard. However, to leverage the informative potential of the sensing systems, a series of preliminary evaluations should be carried out to standardize working protocols for the specific features of a winegrowing area (e.g., pedoclimate, topography, cultivar, training system). This work aims at evaluating remote and proximal sensing systems for their performance and suitability to provide information on the vegetative, physiological, yield and qualitative aspects of vines and grapes as a function of different training systems in the Valpolicella wine region (Verona, Italy).