Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Prospects of thermal imaging as a non-invasive tool to assess water status for irrigation scheduling in commercial vineyards

Prospects of thermal imaging as a non-invasive tool to assess water status for irrigation scheduling in commercial vineyards

Abstract

Aim: Irrigated viticulture is expanding worldwide mainly as a short-term adaptation strategy to climate change. Plant-based methods are increasingly being used for irrigation scheduling in commercial vineyards. Canopy temperature (TC) has long been recognized as an indicator of plant water status. TC, but also the thermal stress indices, e.g. crop water stress index (CWSI) and stomatal conductance index (IG) have been used to support and manage irrigation in several crops including grapevine. The goal of this work was to review thermal imaging as non-invasive tool to assess water status in commercial vineyards in Rioja (Spain) and in the wine regions of Douro and Alentejo (Portugal). 

Methods and Results: Thermal cameras were used as ground based portable sensors to manually assess water status. Significant correlations between TC and/or thermal indices and stomatal conductance or stem water potential (Ψstem) were observed in the vineyards of these top wine regions. Recently, a thermal camera was also mounted in an all-terrain-vehicle for the on-the-go acquisition of thermal images. TC, CWSI and IG were significantly correlated to Ψstem at both canopy sides. Water status of a commercial Tempranillo vineyard was also evaluated using on-the-go thermal imagery retrieved from a moving quad at 5 km/h in Rioja. Moreover, an infrared radiometer was installed in an autonomous terrestrial robot to assess and map water status of commercial Touriga Nacional vineyard in the Douro Valley. 

Conclusions: 

Several trials carried out in Spain and Portugal showed the effectiveness of thermal imaging to monitor water status in commercial vineyards.

Significance and Impact of the Study: Our results are promising and show the potential of thermal imaging as a non-invasive technology in precision viticulture to evaluate vineyard water status, helping grape growers to optimize irrigation management.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Javier Tardaguila1*, Maria P. Diago1, Juan Fernández-Novales1, Inés Hernández1, Salvador Gutierrez2, Fernando Alves3, Joana Valente3, Ricardo Egipto4, Gonçalo Victorino5, J. Miguel Costa5, Carlos M. Lopes5

1Televitis Research Group. University of La Rioja. 26006 Logroño, Spain
2Department of Computer Science and Engineering, University of Cádiz, 11519 Puerto Real, Spain
3 Symington Family Estates, Travessa Barão de Forrester 86, 4431-901 Vila Nova de Gaia, Portugal
 4INIAV, I.P. Pólo de Dois Portos, Quinta da Almoínha. 2565-191, Dois Portos, Portugal
5LEAF, Instituto Superior de Agronomia. Universidade de Lisboa. 1349-017 Lisboa, Portugal

Contact the author

Keywords

Sensing technologies, non-invasive sensor, CWSI, IG, precision irrigation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Climate effect on ripening process in Vitis vinifera, L. cv. Cencibel

A seven years survey (2003 to 2009) has been carried out over old traditional vineyards cv. Cencibel in La Mancha region (Spain). Seven plots with more than 35 years old were sampled from veraison to harvest, measuring soluble solids (ºBaumé) and acid concentration (g/l in tartaric acid).

Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Service crops in vineyard can provide multiple ecosystem services but they can also lead to competition with the grapevine for soil resources in the Mediterranean region due to potential severe droughts (Garcia et al., 2018). One of the levers of action to manage this competition is the choice of species adapted in terms of growth dynamics and water and nutrients’ needs. The objectives of this study were to determine the effect of temporary service crops on grapevine water and nitrogen status and grapevine yield and yield components in a Mediterranean vineyard.

Untangle berry shrivel environmental risk factors and quantify symptoms with AI – GeomAbs meets BAISIQ

Berry Shrivel (BS, Traubenwelke) is a sugar accumulation disorder of grapevine of unknown causes, having a great negative impact on grape quality and incalculable risks for yield losses, and for which no reliable curative practices are available.

Drought responses in Chardonnay and Sauvignon blanc grapevine cultivars: Mechanistic insights and varietal contrasts

This study explored the responses of Chardonnay and Sauvignon blanc grapevine cultivars to water deficit across four years, uncovering their shared patterns and distinctive coping mechanisms. The research was conducted in a commercial vineyard located in Isla de Maipo, Chile. Various characterization approaches were employed including plant water potentials (), gas exchange measurements, shoot vulnerability curves, productivity assessments, and leaf cell water relations. Linear mixed models and sensitivity analyses were performed using various statistical methods to evaluate cultivar responses to water deficit. As the water deficit progressed, both cultivars displayed a parallel reduction in stomatal conductance, leaf turgor, and increased shoot embolism.

Shading nets for the adaptation to climate change: effect on vine physiology and grape quality 

Viticulture is threatened by the environmental modification caused by climate change. Higher temperatures determine an acceleration of the ripening process, which can be detrimental to wine quality. In the mediterranean area, heat waves are also increasingly frequent, with consequent blocking of the vegetative activity of the vines and increased susceptibility to sunburn damage. thus, adaptation strategies are necessary to reduce stress and improve the quality of grape production. Amongst the various techniques available, shading nets represent an interesting alternative for their effects on canopy microclimate (i.e., reduction of photosynthetic activity, improvement of water use efficiency, and slowing down in the ripening process).