Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Prospects of thermal imaging as a non-invasive tool to assess water status for irrigation scheduling in commercial vineyards

Prospects of thermal imaging as a non-invasive tool to assess water status for irrigation scheduling in commercial vineyards

Abstract

Aim: Irrigated viticulture is expanding worldwide mainly as a short-term adaptation strategy to climate change. Plant-based methods are increasingly being used for irrigation scheduling in commercial vineyards. Canopy temperature (TC) has long been recognized as an indicator of plant water status. TC, but also the thermal stress indices, e.g. crop water stress index (CWSI) and stomatal conductance index (IG) have been used to support and manage irrigation in several crops including grapevine. The goal of this work was to review thermal imaging as non-invasive tool to assess water status in commercial vineyards in Rioja (Spain) and in the wine regions of Douro and Alentejo (Portugal). 

Methods and Results: Thermal cameras were used as ground based portable sensors to manually assess water status. Significant correlations between TC and/or thermal indices and stomatal conductance or stem water potential (Ψstem) were observed in the vineyards of these top wine regions. Recently, a thermal camera was also mounted in an all-terrain-vehicle for the on-the-go acquisition of thermal images. TC, CWSI and IG were significantly correlated to Ψstem at both canopy sides. Water status of a commercial Tempranillo vineyard was also evaluated using on-the-go thermal imagery retrieved from a moving quad at 5 km/h in Rioja. Moreover, an infrared radiometer was installed in an autonomous terrestrial robot to assess and map water status of commercial Touriga Nacional vineyard in the Douro Valley. 

Conclusions: 

Several trials carried out in Spain and Portugal showed the effectiveness of thermal imaging to monitor water status in commercial vineyards.

Significance and Impact of the Study: Our results are promising and show the potential of thermal imaging as a non-invasive technology in precision viticulture to evaluate vineyard water status, helping grape growers to optimize irrigation management.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Javier Tardaguila1*, Maria P. Diago1, Juan Fernández-Novales1, Inés Hernández1, Salvador Gutierrez2, Fernando Alves3, Joana Valente3, Ricardo Egipto4, Gonçalo Victorino5, J. Miguel Costa5, Carlos M. Lopes5

1Televitis Research Group. University of La Rioja. 26006 Logroño, Spain
2Department of Computer Science and Engineering, University of Cádiz, 11519 Puerto Real, Spain
3 Symington Family Estates, Travessa Barão de Forrester 86, 4431-901 Vila Nova de Gaia, Portugal
 4INIAV, I.P. Pólo de Dois Portos, Quinta da Almoínha. 2565-191, Dois Portos, Portugal
5LEAF, Instituto Superior de Agronomia. Universidade de Lisboa. 1349-017 Lisboa, Portugal

Contact the author

Keywords

Sensing technologies, non-invasive sensor, CWSI, IG, precision irrigation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

First application of an original methodology created to overcome conflicts between stakeholders in an important wine-growing territory: methodology, results, and perspectives in the application of sustainability EME4.1C

Considering the previous research and activities, also, on Sustainability EME4.1C which, as widely known, considers in a harmonious chain all the factors material, immaterial, moral and spiritual related to all aspects environmental, economic, social, existential, relational, ethical, technical and “MetaEthic” indexed 4.1C

Yeast diversity in Vitis labrusca l. Ecosystems

Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, little is known about the diversity of yeast communities present in non-vinifera Vitis ecosystems (i.e., grapes and spontaneously fermenting grape musts). Potentially scientific and/or enological valuable yeast strains from these non-vinifera Vitis ecosystems might never be isolated from V. vinifera L. Using a standard culture-dependent strategy, we studied the population of yeast species during initial stages of spontaneous fermentation of V. labrusca L. (Isabella) grape musts. Rare non-Saccharomyces yeast species were recognized in Isabella, including Candida azymoides, Pichia cecembensis, Candida californica, Candida bentonensis, Issatchenkia hanoiensis and Candida apicola.

Exploring diversified service offerings in the Spanish wine industry

The spanish wine industry stands at a crossroads, transitioning from a traditional emphasis on wine production to a landscape increasingly characterized by diversified service offerings. This paper delves into the nuances of servitization within spanish wineries, investigating the determinants of servitization and the impact of these diversified services on revenue streams. The paper posits hypotheses concerning the influence of various factors, such as winery size, location, market orientation, ownership structure, market competition, regulatory environment, market demand, firm capabilities, owner characteristics, and firm age, on the adoption of diversified service offerings in spanish wineries. The methodology involves comprehensive regression analysis to unravel the drivers of servitization within this context.

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2 (approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2).

Variability in intrinsic water use efficiency (WUEi) of eight red varieties grown in the center of the Iberian Peninsula during an atypical vintage year

The study was performed in the summer of 2007, the point of confluence of a rather atypical vintage year in the area with abnormally low temperatures after a very humid spring