Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Prospects of thermal imaging as a non-invasive tool to assess water status for irrigation scheduling in commercial vineyards

Prospects of thermal imaging as a non-invasive tool to assess water status for irrigation scheduling in commercial vineyards

Abstract

Aim: Irrigated viticulture is expanding worldwide mainly as a short-term adaptation strategy to climate change. Plant-based methods are increasingly being used for irrigation scheduling in commercial vineyards. Canopy temperature (TC) has long been recognized as an indicator of plant water status. TC, but also the thermal stress indices, e.g. crop water stress index (CWSI) and stomatal conductance index (IG) have been used to support and manage irrigation in several crops including grapevine. The goal of this work was to review thermal imaging as non-invasive tool to assess water status in commercial vineyards in Rioja (Spain) and in the wine regions of Douro and Alentejo (Portugal). 

Methods and Results: Thermal cameras were used as ground based portable sensors to manually assess water status. Significant correlations between TC and/or thermal indices and stomatal conductance or stem water potential (Ψstem) were observed in the vineyards of these top wine regions. Recently, a thermal camera was also mounted in an all-terrain-vehicle for the on-the-go acquisition of thermal images. TC, CWSI and IG were significantly correlated to Ψstem at both canopy sides. Water status of a commercial Tempranillo vineyard was also evaluated using on-the-go thermal imagery retrieved from a moving quad at 5 km/h in Rioja. Moreover, an infrared radiometer was installed in an autonomous terrestrial robot to assess and map water status of commercial Touriga Nacional vineyard in the Douro Valley. 

Conclusions: 

Several trials carried out in Spain and Portugal showed the effectiveness of thermal imaging to monitor water status in commercial vineyards.

Significance and Impact of the Study: Our results are promising and show the potential of thermal imaging as a non-invasive technology in precision viticulture to evaluate vineyard water status, helping grape growers to optimize irrigation management.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Javier Tardaguila1*, Maria P. Diago1, Juan Fernández-Novales1, Inés Hernández1, Salvador Gutierrez2, Fernando Alves3, Joana Valente3, Ricardo Egipto4, Gonçalo Victorino5, J. Miguel Costa5, Carlos M. Lopes5

1Televitis Research Group. University of La Rioja. 26006 Logroño, Spain
2Department of Computer Science and Engineering, University of Cádiz, 11519 Puerto Real, Spain
3 Symington Family Estates, Travessa Barão de Forrester 86, 4431-901 Vila Nova de Gaia, Portugal
 4INIAV, I.P. Pólo de Dois Portos, Quinta da Almoínha. 2565-191, Dois Portos, Portugal
5LEAF, Instituto Superior de Agronomia. Universidade de Lisboa. 1349-017 Lisboa, Portugal

Contact the author

Keywords

Sensing technologies, non-invasive sensor, CWSI, IG, precision irrigation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Aroma composition of mono-varietal white wines for the production of Custoza

AIM: The appellation “Bianco di Custoza” or “Custoza”, born in 1971, is one of the oldest white wines Protected Designation of Origin in Italy.

Adapting the vineyard to climate change in warm climate regions with cultural practices

Since the 1980s global regime shift, grape growers have been steadily adapting to a changing climate. These adaptations have preserved the region-climate-cultivar rapports that have established the global trade of wine with lucrative economic benefits since the middle of 17th century. The advent of using fractions of crop and actual evapotranspiration replacement in vineyards with the use of supplemental irrigation has furthered the adaptation of wine grape cultivation. The shift in trellis systems, as well as pruning methods from positioned shoot systems to sprawling canopies, as well as adapting the bearing surface from head-trained, cane-pruned to cordon-trained, spur-pruned systems have also aided in the adaptation of grapevine to warmer temperatures. In warm climates, the use of shade cloth or over-head shade films not only have aided in arresting the damage of heat waves, but also identified opportunities to reduce the evapotranspiration from vineyards, reducing environmental footprint of vineyard. Our increase in knowledge on how best to understand the response of grapevine to climate change was aided with the identification of solar radiation exposure biomarker that is now used for phenotyping cultivars in their adaptability to harsh environments. Using fruit-based metrics such as sugar-flavonoid relationships were shown to be better indicators of losses in berry integrity associated with a warming climate, rather than solely focusing on region-climate-cultivar rapports. The resilience of wine grape was further enhanced by exploitation of rootstock × scion combinations that can resist untoward droughts and warm temperatures by making more resilient grapevine combinations. Our understanding of soil-plant-atmosphere continuum in the vineyard has increased within the last 50 years in such a manner that growers are able to use no-till systems with the aid of arbuscular mycorrhiza fungi inoculation with permanent cover cropping making the vineyard more resilient to droughts and heat waves. In premium wine grape regions viticulture has successfully adapted to a rapidly changing climate thus far, but berry based metrics are raising a concern that we may be approaching a tipping point.

Key phenolic compounds in the pulp of new red-fleshed table grape hybrids: anthocyanins and flavonols 

The cultivated area of table grapes worldwide has experienced a paramount increase over the last two decades. In this current scenario, traditional varieties are being replaced by new cultivars that prioritize a profitable and sustainable agriculture, while satisfying consumer demands. It is widely recognized that wine varieties, especially those with red berry flesh, are renowned for their high antioxidant capacity and phenolic compounds, which promote health. Recently, this topic has also gained significance in table grape breeding programs.

Evaluation of methods used for the isolation and characterization of grape skin and seed, and wine tannins

Validation of the phloroglucinolysis and RP-HPLC method showed selectivity and repeatability within acceptable limits for all investigated matrices. Recovery of polymeric phenols by SPE was also acceptable.

Inhibition of reductive characters in wine by cu-organic acids: predicting the duration of protection

Cu organic acid complexes efficiently bind hydrogen sulfide in wine and therefore prevent its accumulation and subsequent reductive off-flavour [1]. This fraction of Cu can also bind methanethiol