GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 From plant water status to wine flavonoid composition: a precision viticulture approach in a Sonoma county vineyard

From plant water status to wine flavonoid composition: a precision viticulture approach in a Sonoma county vineyard

Abstract

Context and Purpose of the Study- Plant water status of grapevine plays a critical role in affecting berry and final wine chemical composition. The environmental variabilities existing in vineyard system have significant impacts on plant water status, but it is challenging to individualize environmental factors from the temporal and spatial variabilities in vineyard. Therefore, there is need to monitor the ecophysical variation through utilizing precision viticulture tools in order to minimize the separation in berry composition. This study aims at delineating vineyard into different management zones based on plant water status explained by soil texture, and utilize differential harvest to equilibrate the final berry and wine composition.

Material and Method – Ecophysical variation affecting wine flavonoid composition in a Cabernet Sauvignon/110R vineyard was modeled for 2016 and 2017. Soil properties of the vineyard were proximally sensed to acquire soil texture. An equi-distant 30 m × 30 m grid was overlaid to characterize grapevine primary and secondary metabolism. The mid-day stem water potential (􀀁stem) integrals were calculated and delineated by k-means clustering into two water status zones in 2016: severely stressed (Zone 1) and moderately stressed (Zone 2). Primary metabolism, including total soluble solids, titratable acidity, pH, and berry weights; also, secondary metabolism, including anthocyanins and flavonols were measured throughout the whole season. The primary metabolism decoupled when Zone 2 reached 26 and 24 °Brix in 2016 and 2017, respectively with significantly higher °Brix values of 30 and 27 in Zone 1. Based on this decoupling in °Brix between two water stress zones, fruits were harvested differentially and vinified separately from two zones in both years.

Results – The research site received 39 mm of precipitation in 2016 and 162 mm in 2017. The surface soil texture could explain 84.20% of the variations in 􀀁stem while subsurface soil texture could explain 79.57%, depending on the loam to sandy loam contribution. In 2016, total anthocyanidins were higher in Zone 2. Di- and tri-hydroxylated anthocyanidins were more than 2× concentrated in Zone 2. Myricetin-, quercetin-, kaempferol-3-O-glucosides and total flavonols were higher in Zone 2. Proanthocyanidin subunits were also higher in Zone 2 in 2016. However, there was no difference in any flavonoid compound in 2017 except kaempferol-3-O-glucoside which was lower in Zone 2. The results indicated that in 2016, the water stress between the two zones was great enough to alter flavonoid concentration in base wine. However, in 2017, harvestcommenced earlier when two zones started separating in °Brix, and wine flavonoid concentration coalesced accordingly. This study provides fundamental knowledge to coalesce vineyard variability through linking soil texture to plant water status by using precision viticulture tools, further, their influences on flavonoid profiles in the final wine products.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Runze YU1, Luca BRILLANTE2, Johann MARTÍNEZ-LÜSCHER1, Luis SANCHEZ3, S. Kaan KURTURAL1*

1 Department of Viticulture and Enology, Oakville Experiment Station, University of California, Oakville, CA, USA
2 Department of Viticulture and Enology, California State University, Fresno, CA, USA
3 E & J Gallo Winery, 700 Yosemite Blvd, Modesto, CA, USA

Contact the author

Keywords

Grapevine, anthocyanins, flavonoids, water status, soil texture, spatial variability, viticulture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

REVINE project : regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area.
Regenerative agriculture ameliorates soil structure and microbial biodiversity that, in turn, leads to crop resilience against biotic and abiotic stressful factors. Moreover, enrichment of beneficial microbes in the rhizosphere, such as PGPR and PGPF, are known to trigger the plant immunity inducing the priming state.

Soave beyond the zonation

In a previous zoning program (1998-2002), climatic and pedological factors were able to distinguish 14 terroir within the Soave DOC area where wine characteristics are well recognizable. Nevertheless, in the past vinegrowers identified several vineyards where a better quality of the grapes and wines could be obtained. So, « beyond the zonation » will aim to suggest a new methodology to characterise the Cru, starting with 15 vineyards that were selected in the Soave Classico DOC area. In the year 2005, a meteorological station was positioned in each vineyard and temperature data were collected; because of the limited area of investigation, only 3 rain sensors were set up.

The modification of cultural practices in grapevine cv. Syrah, does it modify the characteristics of the musts?

The work shows the results of a year of experimentation (2020) in a Syrah variety vineyard in La Roda (Castilla-La Mancha, Spain). The trial approach was on a randomized block design with two factors: Irrigation (I) and Pruning (P).
Irrigation schedules were adjusted to apply amounts close to 1,500 m3/ha. With this provision, 2 different irrigation treatments were proposed: I1) Start of irrigation from pea-sized grape to post-harvest (providing at least 20 % of the total amount of irrigation water to be provided post-harvest); I2) Start of irrigation from pea-sized grape to harvest (usual irrigation practice in the study area). Pruning was proposed with two treatments, one at the end of January (P1), which is pruning on a conventional date; and P2) pruning carried out at the beginning of budding. In total, 4 repetitions were designed with 4 elementary plots, each one of them representing one of the proposed treatments (I1P1; I1P2; I2P1; I2P2). In total, 16 plots were worked on and each elementary plot consisted of 30 strains, distributed in 3 lines.
The productive response was evaluated with the yield results of the harvest harvested at 23 ºBrix. The qualitative response was measured in the musts through the indices of technological (acidity, pH and potassium) and phenolic maturity and aromatic compounds in free and glycosylated fractions. The treatments tested had, in general, an effect on the different variables analyzed.

Comparing different vineyard sampling densities and patterns for spatial interpolation of intrinsic water use efficiency

The need to rationalize agricultural inputs has recently increased interest in assessing vineyard variability in order to implement variable rate input applications, so-called ‘precision viticulture’. In many viticultural areas globally, precision viticulture is already widely used such as for selective harvesting and variable rate application (VRA) of inputs such as irrigation and/or fertilizer. Robust VRA relies on having a geostatistically accurate map (of one or more vineyard attributes) requiring high sampling densities, which can be cost- and time-prohibitive to obtain. Previous work on spatial interpolation using kriging have upscaled ground-based measurements, but such upscaling strategies are applicable only when vineyard conditions are spatially continuous and satisfies the assumption of second-order stationary processes. Alternatively, mixed models that combine kriging and auxiliary information, such as the regression kriging (RK) method, are more instructive for spatial predictions. In order to improve prediction accuracies, it is therefore necessary to incorporate additional information to achieve accurate spatial patterns with low error.