Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 DOSAVIÑA® A new app for a more sustainable use of plant protection products in vineyard

DOSAVIÑA® A new app for a more sustainable use of plant protection products in vineyard

Abstract

Aims: DOSAVIÑA® was developed with the aim of helping farmers to determine optimal volume rates for spray applications in vineyards. The final developed tool is a good example of bringing research to end users. 

Methods and Results: DOSAVIÑA® is based on a modified method of Leaf Wall Area (LWA) and includes a tool for sprayer calibration support. Calibration process is highlighted in the APP, as one of the conditions for a good success of the entire process. DOSAVIÑA® also calculates the optimal parameters for working pressure, forward speed, and number and type of nozzles. DOSAVIÑA® was developed by the Unit of Agricultural Machinery at the Universitat Politècnica de Catalunya, and is available for iOS and Android, and also web (https://dosavina.upc.edu). The system, based on a modified version of the leaf wall area (LWA) method, calculates the optimal volume rate for vineyards considering leaf density, canopy width, and sprayer type. Results indicated that water and pesticide use could be reduced by more than 20% while still meeting economic, environmental, and food quality requirements. The design of the tool is aligned with European requirements concerning pesticide use, as established in the European Directive for the sustainable use of pesticides. In the majority of cases, the recommended volumes obtained after using DOSAVIÑA® are lower than those commonly selected by the farmers. This fact, coupled with a dose expression method based on concentration, leads to a consequent reduction in pesticide amounts, in line with the main objective established in Europe after the official publication of the Sustainable Use Directive (EU, 2009). The sprayer adjustment tool included in DOSAVIÑA® represents a convenient complement to the establishment of the optimal volume rate. The automated calculation process allows selection of the most suitable values for the most important parameters, particularly working pressure. Results of field trials demonstrated that an accurate calibration process allows similar levels of coverage to be obtained, even with low spray volumes. 

Conclusion: 

The APP, has been shown to reduce fungicide use by up to 20%. This fact translates not only into significant time savings and higher working capacity, aspects highly valued by the producer, but also an economic benefit and a reduction in the risk of environmental contamination, not only due to the reduction in fungicide used, but also due to the use of the equipment in optimal conditions. 

Significance and Impact of the Study: The social impact generated by the application, especially in the productive sector has been demonstrated. DOSAVIÑA® is also a tool included in the training programs that is especially for the European Commission through CHAFEA, in the BTSF – Best Training for Safer Food.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Emilio Gil*, Javier Campos, Jordi Llop

Department of Agri-Food Engineering and Biotechnology
Esteve Terradas, 8 – 08860 Castelldefels (Barcelona), Spain
Universitat Politécnica de Catalunya

Contact the author

Keywords

DOSAVIÑA®, optimal vineyard spray rates, plant protection products

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.

A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

‘Tempranillo Tinto’ is a black-berried Iberian cultivar that originated from a hybridization between cvs. ‘Benedicto’ and ‘Albillo Mayor’ [1]. Today, it is the third most widely grown wine grape cultivar worldwide with more than 200,000 hectares of vineyards mostly distributed along the Iberian Peninsula, where it is also known as ‘Cencibel’, ‘Tinta de Toro’, ‘Tinta Roriz’, and ‘Aragonez’, among other synonyms. Here, we quantified the intra-varietal genomic diversity in this cultivar through the study of 35 clones or ancient vines from seven different Iberian wine-making regions. A comparative analysis after Illumina whole-genome sequencing revealed the presence of 1,120 clonal single nucleotide variants (SNVs).

Use of fumaric acid on must or during alcoholic fermentation

Fumaric acid has been approved by the OIV in 2021 for its application on wine to control the growth and activity of lactic acid bacteria. Fumaric acid is currently being evaluated by the OIV as an acidifier of must and wine. Investigations during the 2023 vintage provided further information on its use on must or during AF, thus completing information provided during the previous vintage.

Identification and evaluation of the winemaking sub-zones of the PDO Amyndeo winegrowing region

Context and purpose of the study. The concept of terroir encompasses the investigation of the physical environment’s influence on grapevine physiology, grape composition, and wine quality, with an emphasis on employing viticultural zoning techniques to systematically characterize and analyze terroirs.

Irrigation as a tool for heatwave mitigation: the effect of irrigation intensity and timing in Cabernet Sauvignon

Heatwave events, defined as 2 or more days reaching ≥ 38 °C, are an increasingly frequent phenomenon threatening grape production worldwide. Heat stress has been shown to have negative consequences on grapevine physiology, leading to increased evaporative demand and intensified water stress. Due to heatwaves overlapping with important stages of grapevine reproductive development, spanning from berry set to the ripening stage, severe heat can potentially compromise yield and grape quality. The physiological response of grapevine to heat stress suggests a potential use of irrigation to mitigate heatwaves, however there is limited information regarding the irrigation amounts and timings needed for this purpose. Following up on a pivotal trial conducted between 2019 and 2022, in this study irrigation treatments with varying intensity and timing of application were refined to determine their potential mitigation of heat-associated damage to yield and fruit composition.