Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 DOSAVIÑA® A new app for a more sustainable use of plant protection products in vineyard

DOSAVIÑA® A new app for a more sustainable use of plant protection products in vineyard

Abstract

Aims: DOSAVIÑA® was developed with the aim of helping farmers to determine optimal volume rates for spray applications in vineyards. The final developed tool is a good example of bringing research to end users. 

Methods and Results: DOSAVIÑA® is based on a modified method of Leaf Wall Area (LWA) and includes a tool for sprayer calibration support. Calibration process is highlighted in the APP, as one of the conditions for a good success of the entire process. DOSAVIÑA® also calculates the optimal parameters for working pressure, forward speed, and number and type of nozzles. DOSAVIÑA® was developed by the Unit of Agricultural Machinery at the Universitat Politècnica de Catalunya, and is available for iOS and Android, and also web (https://dosavina.upc.edu). The system, based on a modified version of the leaf wall area (LWA) method, calculates the optimal volume rate for vineyards considering leaf density, canopy width, and sprayer type. Results indicated that water and pesticide use could be reduced by more than 20% while still meeting economic, environmental, and food quality requirements. The design of the tool is aligned with European requirements concerning pesticide use, as established in the European Directive for the sustainable use of pesticides. In the majority of cases, the recommended volumes obtained after using DOSAVIÑA® are lower than those commonly selected by the farmers. This fact, coupled with a dose expression method based on concentration, leads to a consequent reduction in pesticide amounts, in line with the main objective established in Europe after the official publication of the Sustainable Use Directive (EU, 2009). The sprayer adjustment tool included in DOSAVIÑA® represents a convenient complement to the establishment of the optimal volume rate. The automated calculation process allows selection of the most suitable values for the most important parameters, particularly working pressure. Results of field trials demonstrated that an accurate calibration process allows similar levels of coverage to be obtained, even with low spray volumes. 

Conclusion: 

The APP, has been shown to reduce fungicide use by up to 20%. This fact translates not only into significant time savings and higher working capacity, aspects highly valued by the producer, but also an economic benefit and a reduction in the risk of environmental contamination, not only due to the reduction in fungicide used, but also due to the use of the equipment in optimal conditions. 

Significance and Impact of the Study: The social impact generated by the application, especially in the productive sector has been demonstrated. DOSAVIÑA® is also a tool included in the training programs that is especially for the European Commission through CHAFEA, in the BTSF – Best Training for Safer Food.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Emilio Gil*, Javier Campos, Jordi Llop

Department of Agri-Food Engineering and Biotechnology
Esteve Terradas, 8 – 08860 Castelldefels (Barcelona), Spain
Universitat Politécnica de Catalunya

Contact the author

Keywords

DOSAVIÑA®, optimal vineyard spray rates, plant protection products

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Aromatic profile evolution of corvina, corvinone and rondinella grapes during withering

AIM AND METHODS: Grape withering is one of the key steps in the production of the most renowned red wines of the Valpolicella area, namely Amarone and Recioto. This practice, which was already used since Roman times, entails important modifications in grape composition and in the chemical and sensorial characteristics of the corresponding wines, especially in terms of aromatic profile. The aim of this research is evaluating the aromatic evolution during grape withering of the three main varieties used in Valpolicella wines: Corvina, Corvinone and Rondinella.Samples of the three varieties were analyzed at harvest and at different stages of withering, namely10%, 20% and 30% of weight loss. Free and glycosidically bound compounds were extracted and analyzed using Gas Chromatography- Mass Spectrometry (GC-MS). RESULTS: For all the samples the data were normalized to eliminate the effect of concentration due to grape dehydration. Terpene content and evolution varied considerably in relationship to grape variety. Corvinone was richer in cyclic terpenes (including phellandrene, limonene, and cymene) and they decreased during withering.

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.

Effects of soil and climate on wine style in the Breede River Valley of South Africa: Sauvignon blanc and Cabernet-Sauvignon

Les effets du sol et du climat sur le style de vin ont été évalués pour des vignes irriguées à deux endroits différents de la vallée de la Breede, en Afrique du Sud. L’un des 2 endroits est cependant plus froid que l’autre, principalement en raison de températures nocturnes plus basses.

How to improve the success of dead vine replacement: insights into the impacts of young plant‘s environment 

Grapevine faces multiple biotic and/or abiotic stresses, which are interrelated. Depending on their incidence, they can have a negative impact on the development and production of the plant, but also on its longevity, leading to vine dieback. One of the consequences of vine dieback on production is the increased replacement rate of dead or missing vines within a parcel.

Can different green manure fertilizations affect the vine balance and grape quality? First evidence of multi-year study

In the context of sustainable viticulture that implements organic practices to maintain soil fertility, green manuring plays a crucial role due to its ability to stock carbon and nitrogen in soil while supporting biodiversity.