Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 DOSAVIÑA® A new app for a more sustainable use of plant protection products in vineyard

DOSAVIÑA® A new app for a more sustainable use of plant protection products in vineyard

Abstract

Aims: DOSAVIÑA® was developed with the aim of helping farmers to determine optimal volume rates for spray applications in vineyards. The final developed tool is a good example of bringing research to end users. 

Methods and Results: DOSAVIÑA® is based on a modified method of Leaf Wall Area (LWA) and includes a tool for sprayer calibration support. Calibration process is highlighted in the APP, as one of the conditions for a good success of the entire process. DOSAVIÑA® also calculates the optimal parameters for working pressure, forward speed, and number and type of nozzles. DOSAVIÑA® was developed by the Unit of Agricultural Machinery at the Universitat Politècnica de Catalunya, and is available for iOS and Android, and also web (https://dosavina.upc.edu). The system, based on a modified version of the leaf wall area (LWA) method, calculates the optimal volume rate for vineyards considering leaf density, canopy width, and sprayer type. Results indicated that water and pesticide use could be reduced by more than 20% while still meeting economic, environmental, and food quality requirements. The design of the tool is aligned with European requirements concerning pesticide use, as established in the European Directive for the sustainable use of pesticides. In the majority of cases, the recommended volumes obtained after using DOSAVIÑA® are lower than those commonly selected by the farmers. This fact, coupled with a dose expression method based on concentration, leads to a consequent reduction in pesticide amounts, in line with the main objective established in Europe after the official publication of the Sustainable Use Directive (EU, 2009). The sprayer adjustment tool included in DOSAVIÑA® represents a convenient complement to the establishment of the optimal volume rate. The automated calculation process allows selection of the most suitable values for the most important parameters, particularly working pressure. Results of field trials demonstrated that an accurate calibration process allows similar levels of coverage to be obtained, even with low spray volumes. 

Conclusion: 

The APP, has been shown to reduce fungicide use by up to 20%. This fact translates not only into significant time savings and higher working capacity, aspects highly valued by the producer, but also an economic benefit and a reduction in the risk of environmental contamination, not only due to the reduction in fungicide used, but also due to the use of the equipment in optimal conditions. 

Significance and Impact of the Study: The social impact generated by the application, especially in the productive sector has been demonstrated. DOSAVIÑA® is also a tool included in the training programs that is especially for the European Commission through CHAFEA, in the BTSF – Best Training for Safer Food.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Emilio Gil*, Javier Campos, Jordi Llop

Department of Agri-Food Engineering and Biotechnology
Esteve Terradas, 8 – 08860 Castelldefels (Barcelona), Spain
Universitat Politécnica de Catalunya

Contact the author

Keywords

DOSAVIÑA®, optimal vineyard spray rates, plant protection products

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Iso-/anisohydric behavior in wine grapes may be a matter of soil moisture

There are claims that wine grape cultivars are either isohydric or anisohydric; the former maintaining, and the latter decreasing, their plant water status as soil moisture declines. However, available information is inconsistent. There are those that show an existence of a continuum in cultivar response to soil moisture rather than a distinct categorization. Others even show both behaviors in the same cultivar grown in different environments. In this study we investigated the behavior of 30 own rooted Vitis vinifera cultivars during successive drydown and rewatering cycles over two growing seasons in arid eastern Washington (<200 mm annual precipitation).

Managing precision irrigation in vineyards: hydraulic and molecular signaling in eight grapevine varieties

Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize vineyard irrigation management and identify the most suitable varieties. In Mediterranean regions, the higher frequency of heat waves and droughts highlights the importance of precision irrigation to meet vine water demands and demonstrates the necessity for a deeper understanding of the different physiological responses among varieties under water stress. In this context, previous reports show an interplay between stomatal regulation of transpiration and changes in leaf hydraulic conductivity, also with the involvement of aquaporins (AQPs), particularly under water stress. However, how those signaling mechanisms are regulated in different grapevine varieties along phenological phases is unclear.

Rootstock selection moderates the effect of rising temperatures through drought tolerance and modulation of stomatal conductance

Climate change is increasing crop evapotranspiration and reducing water availability, especially in the Mediterranean area.

“Terroir” and “Great” zonation study regarding Istrian Malvasia, Porec Rosy Muscat and Momjan White Muscat (HR)

In a so called “Great” zonation, “terroir” study is of great importance also in aim of the best exploiting. In the present paper are shown results from the research in Istria with the aim of individuating the influence of soil

Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Methoxypyrazines (MPs) are readily extracted from grape berry and rachis during fermentation and can impart “green” and “herbaceous” sensory attributes to wine. Irrespective of whether MPs, including 3-isobutyl-2-methoxypyrazine (IBMP), 3-isopropyl-2-methoxypyrazine (IPMP), and 3-sec-butyl-2-methoxypyrazine (SBMP), are extracted from berry or other vine material, techniques for remediation of wine with overpowering sensory characters attributable to MPs suffer from poor specificity or produce undesirable sensory outcomes, meaning that alternative control approaches are needed.