Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 DOSAVIÑA® A new app for a more sustainable use of plant protection products in vineyard

DOSAVIÑA® A new app for a more sustainable use of plant protection products in vineyard

Abstract

Aims: DOSAVIÑA® was developed with the aim of helping farmers to determine optimal volume rates for spray applications in vineyards. The final developed tool is a good example of bringing research to end users. 

Methods and Results: DOSAVIÑA® is based on a modified method of Leaf Wall Area (LWA) and includes a tool for sprayer calibration support. Calibration process is highlighted in the APP, as one of the conditions for a good success of the entire process. DOSAVIÑA® also calculates the optimal parameters for working pressure, forward speed, and number and type of nozzles. DOSAVIÑA® was developed by the Unit of Agricultural Machinery at the Universitat Politècnica de Catalunya, and is available for iOS and Android, and also web (https://dosavina.upc.edu). The system, based on a modified version of the leaf wall area (LWA) method, calculates the optimal volume rate for vineyards considering leaf density, canopy width, and sprayer type. Results indicated that water and pesticide use could be reduced by more than 20% while still meeting economic, environmental, and food quality requirements. The design of the tool is aligned with European requirements concerning pesticide use, as established in the European Directive for the sustainable use of pesticides. In the majority of cases, the recommended volumes obtained after using DOSAVIÑA® are lower than those commonly selected by the farmers. This fact, coupled with a dose expression method based on concentration, leads to a consequent reduction in pesticide amounts, in line with the main objective established in Europe after the official publication of the Sustainable Use Directive (EU, 2009). The sprayer adjustment tool included in DOSAVIÑA® represents a convenient complement to the establishment of the optimal volume rate. The automated calculation process allows selection of the most suitable values for the most important parameters, particularly working pressure. Results of field trials demonstrated that an accurate calibration process allows similar levels of coverage to be obtained, even with low spray volumes. 

Conclusion: 

The APP, has been shown to reduce fungicide use by up to 20%. This fact translates not only into significant time savings and higher working capacity, aspects highly valued by the producer, but also an economic benefit and a reduction in the risk of environmental contamination, not only due to the reduction in fungicide used, but also due to the use of the equipment in optimal conditions. 

Significance and Impact of the Study: The social impact generated by the application, especially in the productive sector has been demonstrated. DOSAVIÑA® is also a tool included in the training programs that is especially for the European Commission through CHAFEA, in the BTSF – Best Training for Safer Food.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Emilio Gil*, Javier Campos, Jordi Llop

Department of Agri-Food Engineering and Biotechnology
Esteve Terradas, 8 – 08860 Castelldefels (Barcelona), Spain
Universitat Politécnica de Catalunya

Contact the author

Keywords

DOSAVIÑA®, optimal vineyard spray rates, plant protection products

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Simplifying the measurement of different forms of cu in wines and strategies for efficient removal

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours

Evaluating analytical methods for quantification of glutathione in grape juice and wine

AIM: Glutathione (GSH) is a powerful natural antioxidant, considered as a promising molecule against oxidative damage of aroma during winemaking and storage.

Application of satellite-derived vegetation indices for frost damage detection in grapevines

Wine grape production is increasingly vulnerable to freeze damage due to warming climates, milder winters, and unpredictable late spring frosts. Traditional methods for assessing frost damage in grapevines which combine fieldwork and meteorological data, are expensive, time-consuming, and labor-intensive. Remote sensing could offer a rapid, inexpensive way to detect frost damage at a regional scale. Remote sensing approaches were used to assess freeze damage in grapevines by evaluating satellite-derived vegetation indices (VIs) to understand the severity and spatial distribution of damage in several New York vineyards immediately after a frost event (May 17th-18th, 2023). PlanetScope 3m satellite images acquired before and after the freeze were used to map damage and measure changes in VIs for vineyards in the Finger Lakes region.

Application of organic carbon status indicators on vineyard soils: the case study of DOC Piave (Veneto region, Italy)

According to the Kyoto Protocol objectives, it’s necessary to identify alternative carbon dioxide sinks, and vineyard soils could be a significant opportunity.

Stabulation (lees stirring) in must as a method for aroma intensification: A comparison with skin contact and a classical version of Traminer and Sauvignon blanc in Austria

In the course of this study, stabilisation (lees stirring in unclarified must) with skin contact and classic white wine vinification were compared for the Sauvignon blanc and Traminer varieties in Austria. The test wines were analysed for the volatile substances esters, free monoterpenes and fruity thiols