Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 DOSAVIÑA® A new app for a more sustainable use of plant protection products in vineyard

DOSAVIÑA® A new app for a more sustainable use of plant protection products in vineyard

Abstract

Aims: DOSAVIÑA® was developed with the aim of helping farmers to determine optimal volume rates for spray applications in vineyards. The final developed tool is a good example of bringing research to end users. 

Methods and Results: DOSAVIÑA® is based on a modified method of Leaf Wall Area (LWA) and includes a tool for sprayer calibration support. Calibration process is highlighted in the APP, as one of the conditions for a good success of the entire process. DOSAVIÑA® also calculates the optimal parameters for working pressure, forward speed, and number and type of nozzles. DOSAVIÑA® was developed by the Unit of Agricultural Machinery at the Universitat Politècnica de Catalunya, and is available for iOS and Android, and also web (https://dosavina.upc.edu). The system, based on a modified version of the leaf wall area (LWA) method, calculates the optimal volume rate for vineyards considering leaf density, canopy width, and sprayer type. Results indicated that water and pesticide use could be reduced by more than 20% while still meeting economic, environmental, and food quality requirements. The design of the tool is aligned with European requirements concerning pesticide use, as established in the European Directive for the sustainable use of pesticides. In the majority of cases, the recommended volumes obtained after using DOSAVIÑA® are lower than those commonly selected by the farmers. This fact, coupled with a dose expression method based on concentration, leads to a consequent reduction in pesticide amounts, in line with the main objective established in Europe after the official publication of the Sustainable Use Directive (EU, 2009). The sprayer adjustment tool included in DOSAVIÑA® represents a convenient complement to the establishment of the optimal volume rate. The automated calculation process allows selection of the most suitable values for the most important parameters, particularly working pressure. Results of field trials demonstrated that an accurate calibration process allows similar levels of coverage to be obtained, even with low spray volumes. 

Conclusion: 

The APP, has been shown to reduce fungicide use by up to 20%. This fact translates not only into significant time savings and higher working capacity, aspects highly valued by the producer, but also an economic benefit and a reduction in the risk of environmental contamination, not only due to the reduction in fungicide used, but also due to the use of the equipment in optimal conditions. 

Significance and Impact of the Study: The social impact generated by the application, especially in the productive sector has been demonstrated. DOSAVIÑA® is also a tool included in the training programs that is especially for the European Commission through CHAFEA, in the BTSF – Best Training for Safer Food.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Emilio Gil*, Javier Campos, Jordi Llop

Department of Agri-Food Engineering and Biotechnology
Esteve Terradas, 8 – 08860 Castelldefels (Barcelona), Spain
Universitat Politécnica de Catalunya

Contact the author

Keywords

DOSAVIÑA®, optimal vineyard spray rates, plant protection products

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Revisiting esters hydrolysis in young white wines

Esters play an essential role in the young white wines’ fruity expression, particularly the groups of ethyl esters of fatty acids (EEFAs) and higher alcohol acetates (HAAs) [1]. However, generally, these groups of esters decrease relatively fast during the first two years of ageing [1, 2].

The soil biodiversity as a support to environmental sustainability in vineyard

The environmental biodiversity is important to guarantee essential services to the living communities, its richness is a symptom of a minor disturbance and improves he environment biological quality.

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines.

La vinicultura en regiones tropicales Brasileras

La producción mundial de uvas para mesa es obtenida de viñedos localizados entre los paralelos 30 y 50º Latitud Norte y 30 y 40º Latitud Sur.

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.