Terroir 2020 banner
IVES 9 IVES Conference Series 9 Australia’s Wine Future: A Climate Atlas

Australia’s Wine Future: A Climate Atlas

Abstract

Speaker: Tom Remenyi

DOI:

Publication date: March 24, 2021

Issue: Terroir 2020

Type: Video

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Mapping plant water status to indirectly assess variability in grape flavonoids and inform selective harvest decisions

Plant water stress affects grape (Vitis vinifera L.) berry composition and is variable in space due to variations in the physical environment at the growing site. Could we use water status maps as a sensitive tool to discriminate between harvest zones?

Relationship between terroir and acidity for the red wine grape cultivar Malbec N or Cot N (Vitis vinifera L.) in AOC “Cahors” and “Côtes du Frontonnais “

L’étude préliminaire, réalisée sur les principaux cépages de la région Midi-Pyrénées, a montré que le Cot N possédait des teneurs en acide tartrique dans les moûts et les vins plus élevées que celles des cépages Négrette N, Tannat N, Duras N et Fer Servadou N.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].

Phenology and bioclimate of grapevine varieties in the tropical region of the São Francisco Valley, Brazil

La région de la Vallée du São Francisco, situe à 9º S, est en train d’augmenter la production des vins fins les dernières années. La région présente climat du type tropical semi-aride (climat viticole à variabilité intra-annuelle selon le Système CCM Géoviticole : “très chaud, à nuits chaudes et à sécheresse forte à sub-humide” en fonction

Piloting grape ripening in a global warming scenario: feasible techniques are available

Under the pressure of global warming, several wine grape growing regions around the world are increasingly suffering from advanced and compressed phenology; endangering wine character while also creating serious logistic problems. From a physiological standpoint, the issue of delaying ripening is not simple as, in several instances, only a few processes must be delayed (i.e. sugar accumulation into the berries) while other events such as pigmentation and accumulation of other important phenolic compounds should proceed at a normal rate. Thus, the issue of decoupling technological maturity from phenolic maturity is another important consideration. Over the last decades, several research groups have endeavored to establish alternate cultural practices aimed at addressing this decoupling. In some cases, special applications of quite robust and well known practices regarding physiological principles have been utilized, however some completely new techniques are also being studied. In figure 1 of the review, we offer a panorama of the available tools and in the text we elaborate on those having provided most reliable and consistent results under an array of genotypes and environmental conditions. Among these, primary focus is given to post‐veraison—apical to the cluster—leaf removal (that can also be suitably replaced by applications of anti‐transpirants); the use of kaolin against multiple summers’ stresses; and a drastic version of late winter pruning having the potential to postpone ripening into a cooler period with improved grape composition and a limited negative impact on yield and storage reserves replenishment.