Terroir 2020 banner
IVES 9 IVES Conference Series 9 Australia’s Wine Future: A Climate Atlas

Australia’s Wine Future: A Climate Atlas

Abstract

Speaker: Tom Remenyi

DOI:

Publication date: March 24, 2021

Issue: Terroir 2020

Type: Video

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Blend wines made of Syrah, Marselan and Tannat, had better color and more phenolic diversity than varietal wines

Background: Elaborating red-wines from grape cultivars with different polyphenolic profiles could improve wine color and its phenolic-dependent characteristics

Discrimination of monovarietal Italian red wines using derivative voltammetry

Identification of specific analytical fingerprints associated to grape variety, origin, or vintage is of great interest for wine producers, regulatory agencies, and consumers. However, assessing such varietal fingerprint is complex, time consuming, and requires expensive analytical techniques. Voltammetry is a fast, cheap, and user-friendly analytical tool that has been used to investigate and measure wine phenolics.

An operational model for capturing grape ripening dynamics to support harvest decisions

Grape ripening is a critical phenophase during which many metabolites driving wine quality are accumulated in berries. Major changes in berry composition include a rapid increase in sugar and a decrease in malic acid content and concentration. Its duration is highly variable depending on grapevine variety, climatic parameters, soil type and management practices.

GC-O and olfactoscan approaches to reveal premature aging markers in Chardonnay wine

Molecular markers of wine oxydation, such as sotolon or Strecker’s aldehydes that induce respectively nut or curry and boiled vegetables or wilted rose odors, can be percieved as a default by consumers. These volatile compounds are especially formed during the premature aging of wine, but it is likely that several contributing compounds are still unknown as is their combined contribution. This study was carried out to identify the markers of oxydation in Chardonnay wine by Gas Chromatography Olfactometry (GC-O) and to study the impact of these markers on the complex wine aromatic buffer using the Olfactoscan approach.A Chardonnay wine (2018-vintage), taken after malolactic fermentation without sulphites addition, was submitted to an artificial oxidation to simulate more or less prononced premature oxidation. Volatile compounds were extracted by Solid-Phase Extraction (SPE) and analysed by GC-O with a panel of 13 trained subjects. The same extract was also submitted to a second analysis based on the Olfactoscan technique, which allowed to evaluate the impact of each volatile compounds on the complex aromatic buffer of a non-oxidized wine delivered as background odor. Preliminary results revealed three types of behavior. On the one hand, several odor zones appeared only with the background odour, suggesting a synergy effect induced by the compounds in the aromatic buffer. Conversely, odor-active compounds could not be perceived within the background odor suggesting a masking effect. Finally several compounds were found to contribute as key odorants for wine oxydation once mixed with the aromatic buffer. These compounds are still to be identified using complementary techniques.

Taking advantage of difficulties. Variable rate application based on canopy maps to achieve a sustainable crop

Aim: The aim of this work was to evaluate the use of Variable Rate Application technologies based on prescription maps in commercial vineyards with large intra-parcel variability to achieve a more sustainable distribution of Plant Protection Products (PPP)