OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

Abstract

During Champagne or sparkling wine tasting, gas-phase CO2 and volatile organic compounds invade the headspace above glasses [1], thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception [2]. Monitoring as accurately as possible the level of gas-phase CO2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO2 and a collection of various tasting parameters.

Based on the tunable diode laser absorption spectroscopy (TDLAS), a diode laser spectrometer (namely, the CO2-DLS) dedicated to monitor gas-phase CO2 in the headspace of champagne glasses was developed [3,4]. The concentration of gas-phase CO2 found in the headspace of champagne glasses served under multivariate conditions was accurately monitored, all along the first 10 minutes following the action of pouring. Our results show the strong impact of various tasting conditions (such as the volume of wine dispensed, the glass shape, the wine temperature, or the level of effervescence, for example) on the release of gas-phase CO2 above the champagne surface. Moreover, a recent upgrading of the CO2-DLS allowed us to evidence that the concentration of gas-phase CO2 in the headspace of a champagne glass is far from being homogeneous in either space or time, with much higher gas-phase CO2 concentrations close to the wine interface.

references:

[1] G. Liger-Belair, Effervescence in champagne and sparkling wines: From grape harvest to bubble rise, Eur. Phys. J. Spec. Top. 226 (2017) 3–116.
[2] L. Hewson, T. Hollowood, S. Chandra, and J. Hort. Gustatory, olfactory and trigeminal interactions in a model carbonated beverage. Chemosensory Perception, 2 (2009) 94–107.
[3] A.-L. Moriaux, R. Vallon, C. Cilindre, B. Parvitte, G. Liger-Belair, V. Zeninari, Development and validation of a diode laser sensor for gas-phase CO2 monitoring above champagne and sparkling wines, Sensors Actuators B Chem. 257 (2018) 745–752.
[4] A.-L. Moriaux, R. Vallon, B. Parvitte, V. Zeninari, G. Liger-Belair, C. Cilindre, Monitoring gas-phase CO2 in the headspace of champagne glasses through combined diode laser spectrometry and micro-gas chromatography analysis, Food Chem. 264 (2018) 255–262.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Anne-Laure Moriaux (1), Raphaël Vallon (1), Bertrand Parvitte (1), Virginie Zeninari (1), Guillaume Roffiaen (2), Laurent Panigai (2), Gérard Liger-Belair (1), Clara Cilindre (1) 

(1) Equipe Effervescence, Champagne et Applications (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France. 
(2) Centre Vinicole – Champagne Nicolas Feuillatte, Chouilly, BP210, Epernay, France. 

Contact the author

Keywords

Champagne, CO2, Diode laser spectrometry, Tasting conditions 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

El medio natural de Chile como factor de adaptación de la vid

Chile, junto con Australia, EE.UU., Sudáfrica, Argentina y Nueva Zelanda constituye el grupo de países del nuevo mundo vitivinícola. Todos ellos en conjunto han experimentado en la última década

Zoning methods in relation to the plant

The characterization of the plant is the obliged pathway between the environment and the product. The responses of the plant amplify or reduce the variations of the environment, while determining directly the type and the quality of the products. These results are inscribed inside the Viticultural Terroir Unit (VTU). VTU is the complex interaction between the Basic Terroir Unit or BTU (interaction mesoclimate x soil/subsoil), the genotype (variety x rootstock), the management system, the oenological technologies. Thus, at the most complex level, a global biological triptych is found again : environment (source) x plant (structure) = produced and exchanged substances.

Evaluation of the sensory profile of doc douro red wines through sensory traditional single-point techniques and temporal dominance methods

No other agricultural product has a stronger relationship with the soil than wine. This study aimed to characterize the sensory profile of red wines from the Douro Demarcated Region (RDD) certified as DOC Douro, through the application of Quantitative Descriptive Analysis (QDA®) and Temporal Dominance of Sensations (TDS) sensory methods. QDA® provides a complete word description for all a product’s sensory properties. The TDS, which is relatively recent in the sensory field [1], allows to evaluation and description of the evolution of the dominant sensory perceptions during the tasting of a food product.Eighteen commercial wines from different producers were evaluated, six different samples representing each of the three sub-regions of the RDD.

On-farm monitoring of grapevine water and nitrogen status in relation to different soil management practices in Valais, Switzerland

In response to increasing societal demands for environmentally-friendly viticulture, winegrowers are adapting their cultivation techniques, particularly by reducing the use of herbicides.

Il sistema vigneto del Lago di Bolsena: caratterizzazione della produzione di Cannaiola di Marta

Il comprensorio del Lago di Bolsena (VT) è un territorio ad elevata vocazione vitivinicola in cui il paesaggio della vite storicamente persiste e caratterizza la fisionomia dei luoghi. Qui gli agroecosistemi viticoli possiedono una valenza ecologico-ambientale, storico-culturale ed economica di rilievo.