Terroir 2020 banner
IVES 9 IVES Conference Series 9 Greek and Cypriot grape varieties as a sustainable solution to mitigate climate change

Greek and Cypriot grape varieties as a sustainable solution to mitigate climate change

Abstract

Aim: The aim of this report is to present evidence on the potential of Greek and Cypriot grape varieties to serve as a sustainable solution to mitigate climate change.

Methods and Results: The work provides a review of recent works involving Greek and Cypriot varieties’ performance under high temperatures and increased dryness.

Conclusions: 

Climate change could threaten the existing balance between local environmental conditions and vitivinicultural production systems over the majority of wine producing areas. The subsequent decrease in the suitability of the current winemaking regions will require, apart from short-term adjustments in vineyard management, the adaptation of plant material by the use of late-ripening and drought resistant varieties and clones. Greek and Cypriot grape cultivars appear to grow well under dryland conditions, and additionally they mature their crop later than most of the well-established international varieties. However limited evidence exists regarding the direct effects of high daytime temperatures and drought especially on the quality of their grapes. This information would greatly assist grape growers in improving cultivar selection and adjusting management decisions.

Significance and Impact of the Study: Indigenous grapevine varieties of the semiarid viticultural regions of Greece and Cyprus have received much less attention compared to other grapes native to Mediterranean areas and therefore deserve to be better studied as a sustainable solution in the context of climate change. However, substituting existing varieties will change the “identity” of (mainly) European wine appellations, therefore the effectiveness of any strategy depends on both the willingness of grape growers and consumers to accept new varieties and also on the flexibility of current legislation.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

Stefanos Koundouras*

School of Agriculture, Aristotle University, 54124, Thessaloniki, Greece

Contact the author

Keywords

Plant material, grapevine, adaptation, temperature, drought

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

Terroir analysis and its complexity

Terroir is not only a geographical site, but it is a more complex concept able to express the “collective knowledge of the interactions” between the environment and the vines mediated through human action and “providing distinctive characteristics” to the final product (OIV 2010). It is often treated and accepted as a “black box”, in which the relationships between wine and its origin have not been clearly explained. Nevertheless, it is well known that terroir expression is strongly dependent on the physical environment, and in particular on the interaction between soil-plant and atmosphere system, which influences the grapevine responses, grapes composition and wine quality. The Terroir studying and mapping are based on viticultural zoning procedures, obtained with different levels of know-how, at different spatial and temporal scales, empiricism and complexity in the description of involved bio-physical processes, and integrating or not the multidisciplinary nature of the terroir. The scientific understanding of the mechanisms ruling both the vineyard variability and the quality of grapes is one of the most important scientific focuses of terroir research. In fact, this know-how is crucial for supporting the analysis of climate change impacts on terroir resilience, identifying new promised lands for viticulture, and driving vineyard management toward a target oenological goal. In this contribution, an overview of the last findings in terroir studies and approaches will be shown with special attention to the terroir resilience analysis to climate change, facing the use and abuse of terroir concept and new technology able to support it and identifying the terroir zones.

Future projections for chilling and heat forcing for European vineyards

Aims: The aims of this study were: (1) to compute recent-past thermal conditions over European vineyards, using state-of-the art bioclimatic indices: chilling portions and growing degree hours; (2) to compute future changes of these thermal conditions using a large ensemble of high-resolution climate models.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

Development of breeding of PIWI varieties in the Czech Republic

Context and purpose of the study. The Czech Republic is one of the most important grape growers of PIWI varieties in the Europe, as the total area planted with PIWI varieties is almost 1000 ha.