Terroir 2020 banner
IVES 9 IVES Conference Series 9 Comparing the chemical and sensory consequences of grapevine smoke exposure in grapes and wine from different cultivars and different wine regions in Australia

Comparing the chemical and sensory consequences of grapevine smoke exposure in grapes and wine from different cultivars and different wine regions in Australia

Abstract

Aim: This study aimed to benchmark the chemical and sensory consequences of grapevine exposure to smoke, by comparing: (i) the concentration of volatile phenols and volatile phenol glycosides in control and smoke-affected grapes from different cultivars and different wine regions; and (ii) the chemical and sensory profiles of wines made from control and smoke-affected grapes, from different cultivars.  

Methods and Results: Control and smoke-affected grapes and wines were sourced from a combination of: experimental trials (involving the application of smoke to different grapevine cultivars); and commercial vineyards located in Australian wine regions, some of which were exposed to bushfire smoke during the 2019/20 growing season. The concentrations of smoke taint marker compounds were determined in grapes and wine by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry; while wine sensory profiles were determined by descriptive analysis. 

Conclusions: 

Volatile phenols and volatile phenol glycosides remain useful chemical markers of smoke taint. Volatile phenol concentrations (in free and glycosylated forms) varied by cultivar and wine region, which likely reflects varietal differences in the naturally occurring (‘background’) levels of volatile phenols, and the density and duration of smoke exposure experienced in different regions.  

Significance and Impact of the Study: Research findings provide an initial benchmark of the ‘background’ levels of free and glycosylated volatile phenols that can occur naturally in grapes from different cultivars, as well as the concentrations of smoke taint marker compounds present in smoke-affected grapes and wine. These results can be used by industry to inform decisions around harvesting vs. rejecting smoke-affected grapes, albeit a greater understanding of baseline volatile phenol levels by cultivar and region is needed.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

Kerry Wilkinson* and Renata Ristic 

School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia 
ARC Training Centre for Innovative Wine Production, Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064, Australia

Contact the author

Keywords

Cresol, guaiacol, smoke taint, syringol, volatile phenols, volatile phenol glycoconjugates

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Exploring between- and within-vineyard variability of “Malvasia di Candia aromatica” vineyards from Colli Piacentini

Several studies demonstrated how climate and soil may be key drivers of variability at different scales.

Beyond classical statistics – data fusion coupled with pattern recognition

AIM: Patterns in data obtained from wine chemical and sensory evaluations are difficult to infer using classical statistics.

Supporting wine production from vineyard to glass through secure IoT devices and blockchain

Temperature fluctuations can significantly affect the chemical composition of wine and in turn its taste and aromas.

Effect of late pruning on yield and wine composition in monastrell wines

Global warming is shifting vine phenology, resulting in a decoupling of phenolic and technological berry ripening. This is altering the balance of fruit traits, which is key relevance to winegrowers

The use of rootstock as a lever in the face of climate change and dieback of vineyard

As viticulture faces challenges such as climate change or vineyard dieback, the choice of the variety and rootstock becomes more and more crucial. To study rootstock levers in the Bordeaux region, a parcel of Cabernet Sauvignon (CS) was planted with four rootstocks in 2014. Twenty repetitions of each of the following four rootstocks were set up: 101-14 MGt, Nemadex AB, 420A MGt and Gravesac. The number of bunches, yields and pruning weights of the vine shoots were measured individually on 240 vines from 2017 to 2021. Since 2020, nitrogen status assessed by assimilable nitrogen level, hydric status assessed by δ13C and berry maturity were measured on 80 samples taken from 20 repetitions of the four rootstocks. A lower yield was measured for CS grafted onto Nemadex AB due to the lower number of bunches and the lower weight of berries. The differences between the other three rootstocks are small, but CS grafted onto 420A MGt was the most productive. The CS grafted onto Nemadex AB had the lowest pruning weight while 101-14 MGt had the highest. In 2020, δ13C showed a more moderate water stress with 101-14 MGt and 420A MGt than with Nemadex AB. Surprisingly, the Gravesac was under more stress than the 101-14 MGt. The nitrogen status in the berries was better for Nemadex AB but this was perhaps due to the significantly lower weight of the berries.Rootstock 101-14 MGt attained the highest accumulation of sugars in the berries while 420A MGt allows to preserve higher acidity. The parcel is still young which may explain some of the results. These measures must therefore be continued over the next several years to fully assess the effects of these rootstocks on the development of the vines and the quality of the production under new climatic conditions.