Terroir 2020 banner
IVES 9 IVES Conference Series 9 Comparing the chemical and sensory consequences of grapevine smoke exposure in grapes and wine from different cultivars and different wine regions in Australia

Comparing the chemical and sensory consequences of grapevine smoke exposure in grapes and wine from different cultivars and different wine regions in Australia

Abstract

Aim: This study aimed to benchmark the chemical and sensory consequences of grapevine exposure to smoke, by comparing: (i) the concentration of volatile phenols and volatile phenol glycosides in control and smoke-affected grapes from different cultivars and different wine regions; and (ii) the chemical and sensory profiles of wines made from control and smoke-affected grapes, from different cultivars.  

Methods and Results: Control and smoke-affected grapes and wines were sourced from a combination of: experimental trials (involving the application of smoke to different grapevine cultivars); and commercial vineyards located in Australian wine regions, some of which were exposed to bushfire smoke during the 2019/20 growing season. The concentrations of smoke taint marker compounds were determined in grapes and wine by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry; while wine sensory profiles were determined by descriptive analysis. 

Conclusions: 

Volatile phenols and volatile phenol glycosides remain useful chemical markers of smoke taint. Volatile phenol concentrations (in free and glycosylated forms) varied by cultivar and wine region, which likely reflects varietal differences in the naturally occurring (‘background’) levels of volatile phenols, and the density and duration of smoke exposure experienced in different regions.  

Significance and Impact of the Study: Research findings provide an initial benchmark of the ‘background’ levels of free and glycosylated volatile phenols that can occur naturally in grapes from different cultivars, as well as the concentrations of smoke taint marker compounds present in smoke-affected grapes and wine. These results can be used by industry to inform decisions around harvesting vs. rejecting smoke-affected grapes, albeit a greater understanding of baseline volatile phenol levels by cultivar and region is needed.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

Kerry Wilkinson* and Renata Ristic 

School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia 
ARC Training Centre for Innovative Wine Production, Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064, Australia

Contact the author

Keywords

Cresol, guaiacol, smoke taint, syringol, volatile phenols, volatile phenol glycoconjugates

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

New fungus-resistant grapevine varieties display high and drought-independent thiol precursor levels

The use of varieties tolerant to diseases is a long-term but promising option to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are starting to release a range of new hybrids performing well regarding fungi susceptibility and wine quality.

First company results and for the territory on the application of the “bio-Métaéthique 4.1c” in italy. Cultural, socio-economic, technical and productive aspects

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar.

New oenological technology for adaptation to climate change: reduction of alcohol content during wine fermentation through stripping, with fermentative CO2

The capture and valorization of fermentative CO2 have been developed for several years by the company w platform for internal uses, notably in the cellars: inerting, cooling, reduction of water consumption, extraction, with aroma valorization. In a context of climatic warming during the vegetative cycle, grapes are currently harvested with a significant sugar concentration, a phenomenon that is expected to intensify in the coming decades. The high alcohol content of the resulting wines goes against the demand of customers who are seeking high-quality wines with less alcohol.

Oxygen transfer through cork stoppers

During wine conservation in a bottle, the control of oxygen transfer from the outside environment to the wine inside the bottle is a key parameter that determines the wine quality. Many other factors can also influence the evolution of wine during postbottling aging,