Terroir 2020 banner
IVES 9 IVES Conference Series 9 Sensory characterisation and consumer perspectives of Australian Cabernet Sauvignon wine typicity

Sensory characterisation and consumer perspectives of Australian Cabernet Sauvignon wine typicity

Abstract

Aim: To identify the sensory attributes responsible for the typicity of Cabernet Sauvignon wines from three Australian Geographical Indications (GIs) and to explore consumer purchase behaviour and preference with regard to regional wines.

Methods and Results: Descriptive analysis (DA) was applied to identify the sensory profiles of vintage 2015 Cabernet Sauvignon wines from Coonawarra (n = 24), Margaret River (n = 10), Yarra Valley (n = 13), and Bordeaux (n = 5). A trained panel (3 males and 7 females) rated 45 aroma, flavour, and mouthfeel attributes, of which 19 were found to be significantly different among the wine samples. Results from canonical variate analysis demonstrated that Bordeaux wines had a more distinct sensory profile compared to the Australian regions; within the Australian regions, wines from Margaret River had a closer profile to those from Yarra Valley than Coonawarra. Of the wines that underwent DA, two from each region were chosen for a study involving consumers (n = 112) that were divided into two groups. One group was informed of the regions prior to tasting each sample and the other group had no information about region. Consumers were surveyed about their wine purchase behaviour, knowledge of wine typicity, preference for the wines, and sensory profile of each wine using rate-all-that-apply methodology.

Conclusions:

Bordeaux wines had a more distinct sensory profile compared to the Australian regions, and were associated with developed characters including ‘savoury’, ‘tobacco’, and ‘earthy’. Wines from Margaret River were deemed to possess a fruit-forward profile along with ‘floral’ characters. With a similar profile to Margaret River, Yarra Valley wines were also found to have a greater incidence of ‘red fruits’ and ‘cooked vegetables’ attributes. Coonawarra wines were characterised by ‘chocolate/vanilla’, ‘mint’, and ‘mallee leaf’ attributes and were rated low in ‘cooked vegetables’. When consumers were informed of the wine region of origin there was an apparent increase in their liking scores, with the effect seeming to be positively related to familiarity with the region. 

Significance and Impact of the Study: Well-established for “Old World” wine producers, typicity is a concept that incorporates aspects of cultivar and terroir of a wine, and acts as a wine quality indicator. Australia also has a range of terroirs contributing to the characters of regional wines, and knowing more about the drivers of distinctiveness can help harness terroir in the promotion of fine Australian wines at an international level. This extends to understanding wine consumers’ behaviours, and being able to attend to their expectations in an objective manner.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Lira Souza Gonzaga, Dimitra L. Capone, Susan E.P. Bastian and David W. Jeffery*

Australian Research Council Training Centre for Innovative Wine Production, and School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen
Osmond, South Australia 5064, Australia

Contact the author

Keywords

Descriptive analysis, hedonics, typicality, regionality, consumer preference

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Viticultural zoning using spatial analysis: characterizing terroirs over the Southern part of the Côtes-du-Rhône appellation (France)

Les approches du terroir en tant qu’entité géographique (zonages) connaissent un développement accru récent en lien avec l’essor des SIG. Les méthodes, les objectifs et les critères utilisés varient considérablement selon les études.

Bioclimatic shifts and land use options for Viticulture in Portugal

Land use, plays a relevant role in the climatic system. It endows means for agriculture practices thus contributing to the food supply. Since climate and land are closely intertwined through multiple interface processes, climate change may lead to significant impacts in land use. In this study, 1-km observational gridded datasets are used to assess changes in the Köppen–Geiger and Worldwide Bioclimatic (WBCS)

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

Isotopes to distinguish production system in Brazilian viticulture

Organic viticulture integrates practices aimed at foresting positive relationships among, vines, soil, and climate, with a focus on sustainability, social responsibility, and environmental protection. To safeguard production integrity, regulatory bodies worldwide conduct organic certifications in accordance with relevant regulations. Considering that agriculture practices influence the nitrogen, carbon and oxygen isotope composition, the study aimed to investigate the response of these isotopes in grape must cultivated by organic, biodynamic and conventional methods to distinguish between production systems.

Differentiating and grouping of oltrepo’ pavese environments according to grape maturation

The maturation patterns process has been very studied. In particular the modelization of the sugars and titratable acidity during the ripening period was an important approach, in particular for the prediction of harvest date (Barillere et al., 1988; Jourion et al.,1987; Maujean et al., 1983; Scienza, 1989). In Oltrepò Pavese, the widest viticultural district of Lombardy – Northern Italy – (about 15000 hectares), grape maturation trends shows high variability, due to the large variation in environmental characteristics of vineyards (altitude, exposure, soil type, mesoclimate) and to “cultivar x environment” interaction.