Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Abstract

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality. However, the overall effect of these agricultural practices depends on the soil water availability, the soil fertility, and the grape cultivar response. Under semiarid conditions, the intensity of competition for water and nutrients associated to cover crop practice can be a handicap for a regulation of grape yield and quality. Also, the effect of cover crops on soil biology under those conditions is poorly understood.

Methods and Results: In the present work we present results of a three year’s experiment studying the effect of combining natural green cover and deficit irrigation on soil microbiome, plant water and nutritional status, and grape yield and quality, in two contrasting genotypes. Changes in functional diversity of microbiomes were mainly associated with soil moisture and also changed throughout the vegetative period. Nevertheless, organic matter decomposition assays determined that the maintenance of the cover implies not only a higher rate of decomposition of organic matter but also that a less fraction of it is degraded, favoring the accumulation of carbon in the soil. Under our experimental conditions, green cover reduced plant growth and yield due to an excess of competition for water regardless of genotype. However, the cover crop had a positive effect on grape quality increasing sugar and phenolic content. 

Conclusions: 

The maintenance of cover crop in vineyards under semiarid areas such as the Mediterranean basin, generates a balance between positive effects such as the increase of organic C in the soil or the improvement of the quality of the grape and negative effects such as the decrease in the availability of water in the soil or the decline of yields.

Significance and Impact of the Study: This study has shown that more sustainable soil management practices can have clear positive effects on the environmental services of the agroecosystem and yield quality. These results open a window to explore this type of management in less studied environments such as the Mediterranean.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

José M. Escalona1,2*, Antonia Romero-Munar1, Josefina Bota1,2, Maurici Mus1, Elena Baraza1,2

Research Group of Plant Biology Under Mediterranean Conditions. Biology Department of Balearic Island University, Ctra Valldemossa km 7,5. 07122 Palma, Spain
Agro-Environmental and Water Economy Research Institute (INAGEA), Ctra Valldemossa km 7,5. 07122 Palma, Spain

Contact the author

Keywords

Cover crop, microbiome, grapevine, ecosystem services

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Counting grape bunches using deep learning under different fruit and leaf occlusion conditions

Yield estimation is very important for the wine industry since provides useful information for vineyard and winery management. The early yield estimation of the grapevine provides information to winegrowers in making management decisions to achieve a better quantity and quality of grapes. In general, yield forecasts are based on destructive sampling of bunches and manual counting of berries per bunch and bunches per vine.

Acumulación de materia seca, orientada a valorar la fijación de carbono, en función del aporte de riego y la pluviometría, en Cabernet-Sauvignon a lo largo de 15 años

The vineyard is capable of fixing carbon in its permanent structure from atmospheric carbon dioxide, through the process of gas exchange and the performance of photosynthesis. The photosynthetic capacity of the vineyard depends on the water resources that the plant may have at its disposal, so the amount of dry matter, derived from the processed photosynthates, that it can store will depend on the water regime of the crop, both in the annually renewable organs as in permanent parts.

Contribution à l’étude des relations entre des variables de fonctionnement des terroirs du Val de Loire et l’évolution des acides organiques des baies durant la maturation du raisin

Dans les terroirs du Val de Loire, la précocité du cycle de la vigne et son alimentation en eau sont des variables de fonctionnement qui influent de manière importante sur la composition des baies à maturité.

Optimizing vine pruning of Pinot noir and Müller-Thurgau after extreme hail damage

Hail damage can have a major impact on the vine’s physiological growth (defoliation, wood and cane damage) and can lead to significant yield and economic losses.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.