Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Abstract

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality. However, the overall effect of these agricultural practices depends on the soil water availability, the soil fertility, and the grape cultivar response. Under semiarid conditions, the intensity of competition for water and nutrients associated to cover crop practice can be a handicap for a regulation of grape yield and quality. Also, the effect of cover crops on soil biology under those conditions is poorly understood.

Methods and Results: In the present work we present results of a three year’s experiment studying the effect of combining natural green cover and deficit irrigation on soil microbiome, plant water and nutritional status, and grape yield and quality, in two contrasting genotypes. Changes in functional diversity of microbiomes were mainly associated with soil moisture and also changed throughout the vegetative period. Nevertheless, organic matter decomposition assays determined that the maintenance of the cover implies not only a higher rate of decomposition of organic matter but also that a less fraction of it is degraded, favoring the accumulation of carbon in the soil. Under our experimental conditions, green cover reduced plant growth and yield due to an excess of competition for water regardless of genotype. However, the cover crop had a positive effect on grape quality increasing sugar and phenolic content. 

Conclusions: 

The maintenance of cover crop in vineyards under semiarid areas such as the Mediterranean basin, generates a balance between positive effects such as the increase of organic C in the soil or the improvement of the quality of the grape and negative effects such as the decrease in the availability of water in the soil or the decline of yields.

Significance and Impact of the Study: This study has shown that more sustainable soil management practices can have clear positive effects on the environmental services of the agroecosystem and yield quality. These results open a window to explore this type of management in less studied environments such as the Mediterranean.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

José M. Escalona1,2*, Antonia Romero-Munar1, Josefina Bota1,2, Maurici Mus1, Elena Baraza1,2

Research Group of Plant Biology Under Mediterranean Conditions. Biology Department of Balearic Island University, Ctra Valldemossa km 7,5. 07122 Palma, Spain
Agro-Environmental and Water Economy Research Institute (INAGEA), Ctra Valldemossa km 7,5. 07122 Palma, Spain

Contact the author

Keywords

Cover crop, microbiome, grapevine, ecosystem services

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

La zonazione della D.O.C. Bolgheri (Castagneto C.): aspetti metodologici ed applicativi

The results of the first step of the zoning study carried out in Bolghery appellation area (Castagneto Carducci, Tuscany) in the 1993-1995 period have been recently published. Quality factors of Bolgheri appellation and different “terroirs ” were identified.

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Chenin Blanc Old Vine character: evaluating a typicality concept by data mining experts’ reviews and producers’ tasting notes

Concepts such as typicality are difficult to demonstrate using the limited set of samples that can be subjected to sensory evaluation. This is due both to the complexity of the concept and to the limitations of traditional sensory evaluation (number of samples per session, panel fatigue, the need for multiple sessions and methods, etc.). On the other hand, there is a large amount of data already available, accumulated through many years of consistent evaluation. These data are held in repositories (such as Platter’s Wine Guide in the case of South Africa Wine, wineonaplatter.com) and in technical notes provided by the producers.

Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Phenolic compounds are released from the wood into the wine spirit (WS) during the ageing process, and are of utmost importance to the colour, flavour, taste and the overall quality acquired by this spirit drink.1 Their concentrations in the WS and the related effects mainly depend on the kind of wood (oaks vs chestnut), toasting level and ageing technology (traditional using wooden barrels vs alternative).1,2,3

Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. Through rhizodeposition, plants regulate their associated microbiome composition depending on the environment and plant factors, including genotypes. Since the phylloxera crisis, Vitis vinifera cultivars are mainly grafted onto American Vitis hybrids. Rootstocks play a pivotal role in the grapevine development, as the interface between the scion and the soil.