Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Abstract

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality. However, the overall effect of these agricultural practices depends on the soil water availability, the soil fertility, and the grape cultivar response. Under semiarid conditions, the intensity of competition for water and nutrients associated to cover crop practice can be a handicap for a regulation of grape yield and quality. Also, the effect of cover crops on soil biology under those conditions is poorly understood.

Methods and Results: In the present work we present results of a three year’s experiment studying the effect of combining natural green cover and deficit irrigation on soil microbiome, plant water and nutritional status, and grape yield and quality, in two contrasting genotypes. Changes in functional diversity of microbiomes were mainly associated with soil moisture and also changed throughout the vegetative period. Nevertheless, organic matter decomposition assays determined that the maintenance of the cover implies not only a higher rate of decomposition of organic matter but also that a less fraction of it is degraded, favoring the accumulation of carbon in the soil. Under our experimental conditions, green cover reduced plant growth and yield due to an excess of competition for water regardless of genotype. However, the cover crop had a positive effect on grape quality increasing sugar and phenolic content. 

Conclusions: 

The maintenance of cover crop in vineyards under semiarid areas such as the Mediterranean basin, generates a balance between positive effects such as the increase of organic C in the soil or the improvement of the quality of the grape and negative effects such as the decrease in the availability of water in the soil or the decline of yields.

Significance and Impact of the Study: This study has shown that more sustainable soil management practices can have clear positive effects on the environmental services of the agroecosystem and yield quality. These results open a window to explore this type of management in less studied environments such as the Mediterranean.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

José M. Escalona1,2*, Antonia Romero-Munar1, Josefina Bota1,2, Maurici Mus1, Elena Baraza1,2

Research Group of Plant Biology Under Mediterranean Conditions. Biology Department of Balearic Island University, Ctra Valldemossa km 7,5. 07122 Palma, Spain
Agro-Environmental and Water Economy Research Institute (INAGEA), Ctra Valldemossa km 7,5. 07122 Palma, Spain

Contact the author

Keywords

Cover crop, microbiome, grapevine, ecosystem services

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Investigating the Ancient Egyptian wines: The wine jars database

In Ancient Egypt, wine was a luxury product consumed mainly by the upper classes and the royal family and offered to gods in daily religious rituals in the temples.
Since the Predynastic (4000-3100 BC) period, wine jars were placed in tombs as funerary offerings. From the Old Kingdom (2680-2160 BC) to the Greco-Roman (332 BC-395 AD) period, viticulture and winemaking scenes were depicted on the private tombs’ walls. During the New Kingdom (1539-1075 BC), wine jars were inscribed to indicate: vintage year, product, quality, provenance, property and winemaker’s name and title.

On the impact of preformed α-dicarbonyls in the production of Strecker aldehydes. Exploring the addition of sacrificial amino acids as a tool to reduce Strecker aldehydes production

The reaction between Strecker amino acids and α-dicarbonyls is a key pathway in the formation of Strecker aldehydes (SA), which are crucial oxidation-related odorants in wine [1].

Chitosan elicits mono-glucosylated stilbene production and release in fed-batch fermentation of grape cells 

In the present study, the optimal conditions of grape (Vitis vinifera cv ‘Barbera’) cell cultures in batch and fed-batch bioreactor processes were studied to specifically improve the production of mono-glucosylated stilbenes.

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar

Consumers and the wine industry tend to agree on the ability of old vines to produce fruit that allows the production of wine of superior character. However, despite past and ongoing research, objective evidence of this point of view is still debated and studies on robust, specifically dedicated plots are scarce. Thus the impact of grapevine age on berry oenological potential and wine quality remains an open question. To try to objectively address the issue, a unique vineyard was established at Geisenheim University, Germany. It was planted in 1971 with cv. Riesling grafted on 5C Teleki. In 1995 and 2012, several rows were uprooted and replanted with the same rootstock/scion combination, resulting in a vineyard with alternate rows of identical plant material, but with different planting dates. The parameters of technical maturity and grape composition at harvest were analyzed during seasons 2014, 2015, 2016 and 2017 combining HPLC and enzymatic methods. Separate micro-vinifications were made for each age group and wine composition was analyzed by a combination of 1H-NMR and SPE-GC-MS.