Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Abstract

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality. However, the overall effect of these agricultural practices depends on the soil water availability, the soil fertility, and the grape cultivar response. Under semiarid conditions, the intensity of competition for water and nutrients associated to cover crop practice can be a handicap for a regulation of grape yield and quality. Also, the effect of cover crops on soil biology under those conditions is poorly understood.

Methods and Results: In the present work we present results of a three year’s experiment studying the effect of combining natural green cover and deficit irrigation on soil microbiome, plant water and nutritional status, and grape yield and quality, in two contrasting genotypes. Changes in functional diversity of microbiomes were mainly associated with soil moisture and also changed throughout the vegetative period. Nevertheless, organic matter decomposition assays determined that the maintenance of the cover implies not only a higher rate of decomposition of organic matter but also that a less fraction of it is degraded, favoring the accumulation of carbon in the soil. Under our experimental conditions, green cover reduced plant growth and yield due to an excess of competition for water regardless of genotype. However, the cover crop had a positive effect on grape quality increasing sugar and phenolic content. 

Conclusions: 

The maintenance of cover crop in vineyards under semiarid areas such as the Mediterranean basin, generates a balance between positive effects such as the increase of organic C in the soil or the improvement of the quality of the grape and negative effects such as the decrease in the availability of water in the soil or the decline of yields.

Significance and Impact of the Study: This study has shown that more sustainable soil management practices can have clear positive effects on the environmental services of the agroecosystem and yield quality. These results open a window to explore this type of management in less studied environments such as the Mediterranean.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

José M. Escalona1,2*, Antonia Romero-Munar1, Josefina Bota1,2, Maurici Mus1, Elena Baraza1,2

Research Group of Plant Biology Under Mediterranean Conditions. Biology Department of Balearic Island University, Ctra Valldemossa km 7,5. 07122 Palma, Spain
Agro-Environmental and Water Economy Research Institute (INAGEA), Ctra Valldemossa km 7,5. 07122 Palma, Spain

Contact the author

Keywords

Cover crop, microbiome, grapevine, ecosystem services

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Ten years soil diagnosis in vineyards, with particularly analysis of organic and microbial mass and measuring their evolution

Since 1996, we study the soil in viticulture, specially in the South of France. In the field, we delimit soil units and observe soil profiles and take samples to analyse its physical, mineral, organic and microbial mass composition

Evolution of grapeseed composition during maturation and characterization of its impact on wine compound using molecular networks

Usually the winemaker consider the grapeberry maturity as an actor of the wine quality. Grape seed are frequently used as a marker to assess the grape maturity. The first aim of this study is to obtain a better understanding of the impact of grape seed maturity on the grape seed and grape berry composition.

Big data analysis of pesticides from the vine to the winery

Of biocontrol products and resistant grape varieties, synthetic pesticides are still widely used to control fungal diseases and protect vines from potential damage caused by pests. The use of pesticides is strictly regulated, and their use can sometimes lead to transfer from the grapes to the must and then into the wine. The study of pesticide residues in grapes and wines is commonly carried out by wine producers in order, among other things, to optimize treatment routes, check that products comply with regulations, and ultimately guarantee the food safety of the wine.

A new approach for sensory characterization of grape. Relationship with chemical composition

Characterize taste and mouthfeel properties of grapes elicited by the phenolic fraction (PF) of grape berries and establish relationships with chemical variables. METHODS: As many as 31 diverse grape lots of Tempranillo Tinto and Garnacha Tinta from three different regions were harvested. Grapes were destemmed and macerated in 15% of ethanol for one week and extracts were submitted to solid phase extraction. The recovered polyphenolic fraction was reconstituted in wine model and characterized by a panel of 21 wine experts employing a list of 23 taste and mouthfeel-related attributes following a rate-k-attributes methodology. RESULTS: Six significant attributes among the 31 samples differed based on ANOVA results: “dry”, “coarse”, “bitter”, “dry on tongue”, “sticky” and “watery”. PCA with VARIMAX algorithm was calculated.

Cold plasma at atmospheric pressure for eliminating Brettanomyces from oak wood

In the oenological industry, the maintenance and sanitation of oak barrels has become a fundamental task. The wood has a porous structure that facilitates the penetration not only of the wine, but of the microorganisms it contains, such as the alterative yeast Brettanomyces bruxellensis.