Terroir 2020 banner
IVES 9 IVES Conference Series 9 Nitrogen isotope ratio (δ15N) as a tool to trace the major nitrogen source in vineyards

Nitrogen isotope ratio (δ15N) as a tool to trace the major nitrogen source in vineyards

Abstract

Aim: to elucidate if it is possible to detect variations in the source of nitrogen (organic vs. inorganic) measuring nitrogen isotope ratio (δ15N) in berries and to examine the degree of variation occurring for this parameter naturally within a vineyard.

Methods and Results: two nitrogen fertilization strategies based on the use of organic and inorganic nitrogen sources were compared through four consecutive seasons in a vineyard, and berry δ15N was measured at harvest. The source of nitrogen affected remarkably nitrogen isotope ratio, as samples from organically fertilized vines always showed higher δ15N values. Additionally, variations in berry δ15N were measured during two seasons in a 60-node sampling grid in a 4.2 ha vineyard, showing that a wide range of variation existed for δ15N within the vineyard, and that its values followed a structured pattern that was in accordance with variations in altitude, being lower in the highest parts of the field.

Conclusions:

The source of nitrogen (organic vs. inorganic) affects berry δ15N. Nevertheless, the degree of variation observed naturally within a single field is very relevant, and associated to variations in altitude. 

Significance and Impact of the Study: this is the first study that, to our knowledge, demonstrates a direct relationship between nitrogen source and nitrogen isotope ratio in grapevines, and opens the door to its use in grapevine nutrition and terroir studies.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Luis G. Santesteban1*, Maite Loidi1, Inés Urretavizcaya2, Oihane Oneka1, Diana Marín1, Ana Villa1, Blanca Mayor1, Sara Crespo1, Jorge Urrestarazu1, Carlos Miranda1, F. Javier Abad1, 2, José B. Royo1

1Dept. of Agronomy, Biotechnology and Food Science, Univ. Pública de Navarra- UPNA, Campus Arrosadia, 31006 Pamplona, Spain
2Instituto de Agrobiotecnología (IdAB-CSIC), Avenida Pamplona 123, 31192, Mutilva Baja, Spain
3INTIA, Edificio de Peritos Avda. Serapio Huici nº 22, 31610, Villava, Spain

Contact the author

Keywords

Nitrogen, fertilization, organic, inorganic, Vitis vinifera L.

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies.

High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

AIM: High pressure technologies represent a promising alternative to thermal treatments for improving quality and safety of liquid foods.

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

Colloidal color stabilization in wine: A comparative study of Saccharomyces and non-Saccharomyces mannoproteins

Structure-function relationships between the polysaccharide part of S. cerevisiae Mannoprotein Pools (MPs) and their potential to interact with anthocyanins and Protein-Tannins aggregates was previously assessed [1,2].

Health benefits of wine industry by-products

The total global production of wine in 2021 was estimated at around 250 million hectoliters. The 30% of the total quantity of vinified grapes corresponds to wine by-products that represent nearly 20 million tons, of which 50% corresponds to the European Union. Wine by-products have been used for different purposes, in agriculture, cosmetics, pharmacy, biorefinery, feed, and the food