Terroir 2020 banner
IVES 9 IVES Conference Series 9 Nitrogen isotope ratio (δ15N) as a tool to trace the major nitrogen source in vineyards

Nitrogen isotope ratio (δ15N) as a tool to trace the major nitrogen source in vineyards

Abstract

Aim: to elucidate if it is possible to detect variations in the source of nitrogen (organic vs. inorganic) measuring nitrogen isotope ratio (δ15N) in berries and to examine the degree of variation occurring for this parameter naturally within a vineyard.

Methods and Results: two nitrogen fertilization strategies based on the use of organic and inorganic nitrogen sources were compared through four consecutive seasons in a vineyard, and berry δ15N was measured at harvest. The source of nitrogen affected remarkably nitrogen isotope ratio, as samples from organically fertilized vines always showed higher δ15N values. Additionally, variations in berry δ15N were measured during two seasons in a 60-node sampling grid in a 4.2 ha vineyard, showing that a wide range of variation existed for δ15N within the vineyard, and that its values followed a structured pattern that was in accordance with variations in altitude, being lower in the highest parts of the field.

Conclusions:

The source of nitrogen (organic vs. inorganic) affects berry δ15N. Nevertheless, the degree of variation observed naturally within a single field is very relevant, and associated to variations in altitude. 

Significance and Impact of the Study: this is the first study that, to our knowledge, demonstrates a direct relationship between nitrogen source and nitrogen isotope ratio in grapevines, and opens the door to its use in grapevine nutrition and terroir studies.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Luis G. Santesteban1*, Maite Loidi1, Inés Urretavizcaya2, Oihane Oneka1, Diana Marín1, Ana Villa1, Blanca Mayor1, Sara Crespo1, Jorge Urrestarazu1, Carlos Miranda1, F. Javier Abad1, 2, José B. Royo1

1Dept. of Agronomy, Biotechnology and Food Science, Univ. Pública de Navarra- UPNA, Campus Arrosadia, 31006 Pamplona, Spain
2Instituto de Agrobiotecnología (IdAB-CSIC), Avenida Pamplona 123, 31192, Mutilva Baja, Spain
3INTIA, Edificio de Peritos Avda. Serapio Huici nº 22, 31610, Villava, Spain

Contact the author

Keywords

Nitrogen, fertilization, organic, inorganic, Vitis vinifera L.

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Training vineyards resilience to environmental variations by managing vine water use

The challenges of the century for viticulture relate to coping with climate change and the loss of biodiversity in a downturning socio-economic context. Now more than ever, the vine and wine industry needs to be resilient to maintain and ensure a future for its heritage. An innovation of capital importance, in line with recently published research, deals with developing new methods of training our inherited and newly planted vineyards to better withstand environmental variations such as drought and heatwaves but also unevenly distributed rains and temperatures.

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France).During the alcoholic fermentation of the must, when H2S appeared, additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. During wine fermentation, a daily measurement of hydrogen sulfide was carried out.

French regulations related to vineyard spraying and examples of devices developed in France and around the world to limit the risks of point-source pollution

Managing pests in vineyards presents a major challenge for winegrowers, who are seeking effective solutions to control diseases and pests.

First large-scale study of thiol precursor distribution in red grape berry compartments and implications for thiol-type red wine production

Climate change and the growing need to reduce the use of phytosanitary products demand the exploration of disease-resistant grape varieties and/or adapted to drought conditions.

Organic recycled mulches in sustainable viticulture: assessment of spontaneous plants communities and weed coverage

In recent years, developing more efficient and sustainable viticulture management has been essential due to the impact of climate change in semiarid regions. For this reason, the use of recycled organic mulching (ROM) in the vineyard has become an interesting strategy to cope with water stress, isolated soil from extreme temperatures and improving soil humidity, control the presence of weeds and therefore reduce the inputs of herbicides and improve soil fertility. This work aimed to analyse the effect of three different organic mulches [straw (S), grape pruning debris (GPD) and spent mushroom compost (SMC)] and two traditional soil management techniques [herbicide (H) and interrow (IN)] on weed coverage and the spontaneous plant communities’ presence. Data sampling was collected throughout the vine vegetative cycle of 2021 in La Rioja, Spain. The different soil management techniques had a clear effect on weed coverage and his development during the vine vegetative cycle. SMC and H were the treatments with the highest and the lowest coverage percentage, respectively. IN had a delayed weed emergence at the beginning of the vine vegetative cycle, but finally it reached maximum values nearby SMC. GPD and S had similar effects on weed emergence, reaching 25-30% of the maximum coverage values. A total of 29 herbaceous species were identified during the vegetative cycle, some of them very isolated and occasional. Principal component analysis (PCAs) showed a good association between spontaneous species and treatments, furthermore, specific species-treatment associations were found. Moreover, three clear groups of herbaceous communities were identified by cluster analysis. This study provides interesting information about the effect of different alternative soil management on herbaceous plant coverage and weed species communities which could contribute to making more sustainable viticulture.