Terroir 2020 banner
IVES 9 IVES Conference Series 9 Nitrogen isotope ratio (δ15N) as a tool to trace the major nitrogen source in vineyards

Nitrogen isotope ratio (δ15N) as a tool to trace the major nitrogen source in vineyards

Abstract

Aim: to elucidate if it is possible to detect variations in the source of nitrogen (organic vs. inorganic) measuring nitrogen isotope ratio (δ15N) in berries and to examine the degree of variation occurring for this parameter naturally within a vineyard.

Methods and Results: two nitrogen fertilization strategies based on the use of organic and inorganic nitrogen sources were compared through four consecutive seasons in a vineyard, and berry δ15N was measured at harvest. The source of nitrogen affected remarkably nitrogen isotope ratio, as samples from organically fertilized vines always showed higher δ15N values. Additionally, variations in berry δ15N were measured during two seasons in a 60-node sampling grid in a 4.2 ha vineyard, showing that a wide range of variation existed for δ15N within the vineyard, and that its values followed a structured pattern that was in accordance with variations in altitude, being lower in the highest parts of the field.

Conclusions:

The source of nitrogen (organic vs. inorganic) affects berry δ15N. Nevertheless, the degree of variation observed naturally within a single field is very relevant, and associated to variations in altitude. 

Significance and Impact of the Study: this is the first study that, to our knowledge, demonstrates a direct relationship between nitrogen source and nitrogen isotope ratio in grapevines, and opens the door to its use in grapevine nutrition and terroir studies.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Luis G. Santesteban1*, Maite Loidi1, Inés Urretavizcaya2, Oihane Oneka1, Diana Marín1, Ana Villa1, Blanca Mayor1, Sara Crespo1, Jorge Urrestarazu1, Carlos Miranda1, F. Javier Abad1, 2, José B. Royo1

1Dept. of Agronomy, Biotechnology and Food Science, Univ. Pública de Navarra- UPNA, Campus Arrosadia, 31006 Pamplona, Spain
2Instituto de Agrobiotecnología (IdAB-CSIC), Avenida Pamplona 123, 31192, Mutilva Baja, Spain
3INTIA, Edificio de Peritos Avda. Serapio Huici nº 22, 31610, Villava, Spain

Contact the author

Keywords

Nitrogen, fertilization, organic, inorganic, Vitis vinifera L.

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Sustainable agriculture and food innovation: preserving agrodiversity and advancing vineyard resilience in Madeira

The ISOPlexis – Center for Sustainable Agriculture and Food Technology, University of Madeira, is a research unit that develops activities in the fields of Sustainable Agriculture, Agri-food Technology and Bioeconomy, with focus on agrodiversity monitoring and phenotyping,

Study of the effect of native vineyard bacteria on the expression of Plasmopara viticolaeffectors

Downy mildew, caused by the oomycete Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni, is one of the most destructive grapevine diseases mostly affecting Vitis vinifera L. and impacting on viticulture. The pathogen invasion can induce in grapevine multiple defense reactions, first PAMP-Triggered Immunity and secondly Effector-Triggered Immunity. Plasmopara viticola can overcome these defense mechanisms through the secretion of effectors, such as RxLR, into the plant cells, making it easier for the oomycete to infect grapevines. Currently, the use of chemical pesticides remains the most effective way to control the pathogen with severe negative side effects on the environment and animal health.

Nuove tecnologie per la viticoltura in zone di alto valore ambientale

Gli autori presentano gli ultimi risultati delle ricerche dei DIAF sulla meccanizzazione delle operazioni colorali in zone di difficile accesso e transitabilità quali le aree marginali, i terreni terrazzati e altre realtà agricole caratterizzate da spazi estremamente ristretti (vivaismo, orticoltura, ecc.).

Physiological means to curb the enthusiasm of viruses from infecting grapevines  

The two most deadly viruses infecting and threatening the productivity of grapevines worldwide are leafroll and red blotch viruses. There is no cure for viral diseases other than roguing the symptomatic vines and replacing them with certified vines derived from clean, virus-tested stocks.
Given that phloem plays a central role in virus infection, this study aimed to purge the virus by girdling the phloem of leafroll-infected vines at different phenological stages of infected grapevines. Phloem-girdling was performed on canes at veraison to varying regions between the proximal and distal clusters.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.