Terroir 2020 banner
IVES 9 IVES Conference Series 9 Effect of fungi addition, root preparation, and other factors on the success of vine replacement in an established vineyard

Effect of fungi addition, root preparation, and other factors on the success of vine replacement in an established vineyard

Abstract

Dead or dying vines must be replaced regularly in order to ensure the sustainability of a vineyard. Successful plant replacement is crucial to maintain yield and quality by encouraging balanced root and leaf development in vines. However, young vines planted within an established vineyard encounter several problems, ranging from poor soil conditions to competition with older vines with well-established root systems.  

Aim: The aim of this project is to study the impact of plant material and plant replacement practices, including the addition of microorganisms.

Methods and Results: Three trials were set up in the Médoc region, north of Bordeaux. The first trial had four modalities in which two rootstocks, previously inoculated with arbuscular mycorrhizal fungi (AMF) or not, were planted in April 2019. The second trial was designed to study the influence of root preparation (bare roots versus balled roots) and the period of replacement of the plants, while the third trial, set up in 2018, crossed the modalities of the root preparation and mycorrhization. Measurements of plant recovery rate, nitrogen status of the leaves and development of shoots were carried out.

In the first trial, the mycorrhization of the plants did not reveal differences in terms of recovery. It did not induce a better development of the shoots or differences in nitrogen status in leaves. In contrast, the other mycorrhizal trial found shoots from mycorrhized plants had better growth, although this result was not confirmed in the second year. The two trials addressing root preparation found that plants with balled roots had better shoot growth and nitrogen status compared to bare rooted plants. However, these results are moderated by other parameters of the trials such as planting period, soil maintenance practices or choice of the rootstock.

Conclusions: 

These results are a first step to understand the effect of fungi addition and root preparation on success of vine replacement. To conclude on the interest of balled plants or mycorrhization, these measures on development and production should be continued until the first years of grape production.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Coralie Dewasme Laveau1*, Séverine Mary2, Anne Janoueix1, Virginie Lauvergeat1

1 University of Bordeaux, INRAE, Bordeaux Sciences Agro, EGFV, UMR1287, F-33140, Villenave d’Ornon, France
2 Vitinnov, University of Bordeaux, Bordeaux Sciences Agro, ISVV, 1 cours du Général de Gaulle, Gradignan, France

Contact the author

Keywords

Mycorrhization, rootstock, planting practices, shoots growth

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Effects of the addition of yeast derived products during aging in chardonnay sparkling winemaking

From the beginning of the yeast autolysis process, several interesting intracellular and cell wall constituyents are released to the media providing different characteristics to the wine, being this process extensively studied in sparkling wines due to their important contribution to their properties (1-2). Yeast derived products (YDs) try to emulate the natural yeast autolysis compounds release enhancing the organoleptic characteristics of resulting wines (2-3). This study is a comprehensive evaluation of the impact of the addition of different YDs added to base wine on the chemical, physical and sensory characteristics of the resulting sparkling wines. METHODS: Chardonnay base wine was employed to carry out this study. Three experimental YDs were added at 5 and 10 g/hL to the tirage liqueur: a yeast autolysate (YA), a yeast protein extract (PE) and an inactivated dry yeast from Torulaspora delbrueckii, (TD), and two commercial specific inactivated dry yeast: OPTIMUM WHITE® (OW) and PURE-LONGEVITY®(PL). After second fermentation, measurements were carried out after 3, 6, 9 and 18 months of aging on lees. General enological parameters, proteins, polysaccharides (HPLC-DAD-RID), volatile compounds profile (GC-MS), foaming characteristics (Mosalux), and descriptive sensory analyses were carried out.

20-Year-Old data set: scion x rootstock x climate, relationships. Effects on phenology and sugar dynamics

Global warming is one of the biggest environmental, social, and economic threats. In the Douro Valley, change to the climate are expected in the coming years, namely an increase in average temperature and a decrease in annual precipitation. Since vine cultivation is extremely vulnerable and influenced by the climate, these changes are likely to have negative effects on the production and quality of wine.
Adaptation is a major challenge facing the viticulture sector where the choice of plant material plays an important role, particularly the rootstock as it is a driver for adaptation with a wide range of effects, the most important being phylloxera, nematode and salt, tolerance to drought and a complex set of interactions in the grafted plant.
In an experimental vineyard, established in the Douro Region in 1997, with four randomized blocs, with five varieties, Touriga Nacional, Tinta Barroca, Touriga Franca and Tinta Roriz, grafted in four rootstocks, Rupestris du Lot, R110, 196-17C, R99 and 1103P, data was collected consecutively over 20 years (2001-2020). Phenological observations were made two to three times a week, following established criteria, to determine the average dates of budbreak, flowering and veraison. During maturation, weekly berry samples were taken to study the dynamics of sugar accumulation, amongst other parameters. Climate data was collected from a weather station located near the vineyard parcel, with data classified through several climatic indices.
The results achieved show a very low coefficient of variations in the average date of the phenophases and an important contribution from the rootstock in the dynamic of the phenology, allowing a delay in the cycle of up to10-12 days for the different combinations. The Principal Component Analysis performed, evaluating trends in the physical-chemical parameters, highlighted the effect of the climate and rootstock on fruit quality by grape varieties.

Qualitative modelling of factors influencing the development of Black rot, for the prediction of damage to bunches

Vines are one of the most pesticide-intensive crops in France, and reducing their use is a major challenge for both the environment and human health.

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

The invasive seaweed Rugulopteryx okamurae: an innovative plant protective extract

Grapevine downy mildew, caused by Plasmopara viticola, is a devastating disease worldwide. Most commercially important cultivars of the European grapevine are highly susceptible and therefore require the recurrent application of synthetic fungicides to control the disease, copper being the most frequently used. However, with European Union goals to lower their usage, there is a need to develop innovative and sustainable strategies. In this respect, seaweeds have proven to have great potential as phytosanitary agents, in addition to promoting plant growth and stress-tolerance.