Terroir 2020 banner
IVES 9 IVES Conference Series 9 Effect of fungi addition, root preparation, and other factors on the success of vine replacement in an established vineyard

Effect of fungi addition, root preparation, and other factors on the success of vine replacement in an established vineyard

Abstract

Dead or dying vines must be replaced regularly in order to ensure the sustainability of a vineyard. Successful plant replacement is crucial to maintain yield and quality by encouraging balanced root and leaf development in vines. However, young vines planted within an established vineyard encounter several problems, ranging from poor soil conditions to competition with older vines with well-established root systems.  

Aim: The aim of this project is to study the impact of plant material and plant replacement practices, including the addition of microorganisms.

Methods and Results: Three trials were set up in the Médoc region, north of Bordeaux. The first trial had four modalities in which two rootstocks, previously inoculated with arbuscular mycorrhizal fungi (AMF) or not, were planted in April 2019. The second trial was designed to study the influence of root preparation (bare roots versus balled roots) and the period of replacement of the plants, while the third trial, set up in 2018, crossed the modalities of the root preparation and mycorrhization. Measurements of plant recovery rate, nitrogen status of the leaves and development of shoots were carried out.

In the first trial, the mycorrhization of the plants did not reveal differences in terms of recovery. It did not induce a better development of the shoots or differences in nitrogen status in leaves. In contrast, the other mycorrhizal trial found shoots from mycorrhized plants had better growth, although this result was not confirmed in the second year. The two trials addressing root preparation found that plants with balled roots had better shoot growth and nitrogen status compared to bare rooted plants. However, these results are moderated by other parameters of the trials such as planting period, soil maintenance practices or choice of the rootstock.

Conclusions: 

These results are a first step to understand the effect of fungi addition and root preparation on success of vine replacement. To conclude on the interest of balled plants or mycorrhization, these measures on development and production should be continued until the first years of grape production.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Coralie Dewasme Laveau1*, Séverine Mary2, Anne Janoueix1, Virginie Lauvergeat1

1 University of Bordeaux, INRAE, Bordeaux Sciences Agro, EGFV, UMR1287, F-33140, Villenave d’Ornon, France
2 Vitinnov, University of Bordeaux, Bordeaux Sciences Agro, ISVV, 1 cours du Général de Gaulle, Gradignan, France

Contact the author

Keywords

Mycorrhization, rootstock, planting practices, shoots growth

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

What are the optimal ranges and thresholds for berry solar radiation for flavonoid biosynthesis?

In wine grape production, canopy management practices are applied to control the source-sink balance and improve the cluster microclimate to enhance berry composition. The aim of this study was to identify the optimal ranges of berry solar radiation exposure (exposure) for upregulation of flavonoid biosynthesis and thresholds for their degradation, to evaluate how canopy management practices such as leaf removal, shoot thinning, and a combination of both affect the grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) yield components, berry composition, and flavonoid profile under context of climate change. First experiment assessed changes in the grape flavonoid content driven by four degrees of exposure. In the second experiment, individual grape berries subjected to different exposures were collected from two cultivars (Cabernet Sauvignon and Petit Verdot). The third experiment consisted of an experiment with three canopy management treatments (i) LR (removal of 5 to 6 basal leaves), (ii) ST (thinned to 24 shoots per vine), and (iii) LRST (a combination of LR and ST) and an untreated control (UNT). Berry composition, flavonoid content and profiles, and 3-isobutyl 2-methoxypyrazine were monitored during berry ripening. Although increasing canopy porosity through canopy management practices can be helpful for other purposes, this may not be the case of flavonoid compounds when a certain proportion of kaempferol was achieved. Our results revealed different sensitivities to degradation within the flavonoid groups, flavonols being the only monitored group that was upregulated by solar radiation. Within different canopy management practices, the main effects were due to the ST. Under environmental conditions given in this trial, ST and LRST hastened fruit maturity; however, a clear improvement of the flavonoid compounds (i.e., greater anthocyanin) was not observed at harvest. Methoxypyrazine berry content decreased with canopy management practices studied. Although some berry traits were improved (i.e. 2.5° Brix increase in berry total soluble solids) due to canopy management practices (ST), this resulted in a four-fold increase in labor operations cost, two-fold decrease in yield with a 10-fold increase in anthocyanin production cost per hectare that should be assessed together as the climate continues to get hot.

Digitising the vineyard: developing new technologies for viticulture in Australia 

New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season.

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF.

Revealing the aroma profile of Greek wines from indigenous grape cultivars

The indigenous Greek grape varieties Assyrtiko, Malagousia, Moschofilero and Roditis are used to produce white wines that are attracting the interest of wine producers and consumers due to their aromatic characteristics [1]. In addition, the Agiorgitiko and Xinomavro varieties are Greece’s most prominent red grape varieties.

Un modello di lavoro per lo studio dell’ up-grading tecnologico del vigneto nel Veneto Occidentale. Connettività degli attori e mappatura su dati avepa integrati con rilevamento speditivo e qualitativo

Il lavoro si prefigge di esaminare la propensione alla modernizzazione della viticoltura del Veneto Occidentale, letto attraverso la diffusione di forme di allevamento a sviluppo contenuto.