Terroir 2020 banner
IVES 9 IVES Conference Series 9 Effect of fungi addition, root preparation, and other factors on the success of vine replacement in an established vineyard

Effect of fungi addition, root preparation, and other factors on the success of vine replacement in an established vineyard

Abstract

Dead or dying vines must be replaced regularly in order to ensure the sustainability of a vineyard. Successful plant replacement is crucial to maintain yield and quality by encouraging balanced root and leaf development in vines. However, young vines planted within an established vineyard encounter several problems, ranging from poor soil conditions to competition with older vines with well-established root systems.  

Aim: The aim of this project is to study the impact of plant material and plant replacement practices, including the addition of microorganisms.

Methods and Results: Three trials were set up in the Médoc region, north of Bordeaux. The first trial had four modalities in which two rootstocks, previously inoculated with arbuscular mycorrhizal fungi (AMF) or not, were planted in April 2019. The second trial was designed to study the influence of root preparation (bare roots versus balled roots) and the period of replacement of the plants, while the third trial, set up in 2018, crossed the modalities of the root preparation and mycorrhization. Measurements of plant recovery rate, nitrogen status of the leaves and development of shoots were carried out.

In the first trial, the mycorrhization of the plants did not reveal differences in terms of recovery. It did not induce a better development of the shoots or differences in nitrogen status in leaves. In contrast, the other mycorrhizal trial found shoots from mycorrhized plants had better growth, although this result was not confirmed in the second year. The two trials addressing root preparation found that plants with balled roots had better shoot growth and nitrogen status compared to bare rooted plants. However, these results are moderated by other parameters of the trials such as planting period, soil maintenance practices or choice of the rootstock.

Conclusions: 

These results are a first step to understand the effect of fungi addition and root preparation on success of vine replacement. To conclude on the interest of balled plants or mycorrhization, these measures on development and production should be continued until the first years of grape production.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Coralie Dewasme Laveau1*, Séverine Mary2, Anne Janoueix1, Virginie Lauvergeat1

1 University of Bordeaux, INRAE, Bordeaux Sciences Agro, EGFV, UMR1287, F-33140, Villenave d’Ornon, France
2 Vitinnov, University of Bordeaux, Bordeaux Sciences Agro, ISVV, 1 cours du Général de Gaulle, Gradignan, France

Contact the author

Keywords

Mycorrhization, rootstock, planting practices, shoots growth

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Conventional vineyard practices have lead in many environmental disturbances as erosion, soil compaction, loss of organic matter and soil biodiversity, water contamination

Assessing the feasibility of direct injection for pesticide residue analysis in grape juice by liquid chromatography/triple quadrupole mass spectrometry

In Brazil, the regulation of pesticide residues is guided by the National Health Surveillance Agency (ANVISA) and the Ministry of Agriculture and Livestock (MAPA), emphasizing the importance of monitoring pesticide levels in agricultural products to protect consumer health.

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths.

Downscaling of remote sensing time series: thermal zone classification approach in Gironde region

In viticulture, the challenges of local climate modelling are multiple: taking into account the local environment, fine temporal and spatial scales, reliable time series of climate data, ease of implementation and reproducibility of the method. At the local scale, recent studies have demonstrated the contribution of spatialization methods for ground-based climate observation data considering topographic factors such as altitude, slope, aspect, and geographic coordinates (Le Roux et al, 2017; De Rességuier et al, 2020). However, these studies have shown questions in terms of the reproducibility and sustainability of this type of climate study. In this context, we evaluated the potential of MODIS thermal satellite images validated with ground-based climate data (Morin et al, 2020). Previous studies have been encouraging, but questions remain to be explored at the regional scale, particularly in the dynamics of the massive use of bioclimatic indices to classify the climate of wine regions. The results at the local scale were encouraging, but this approach was tested in the current study at the regional scale. Several objectives were set: 1) to evaluate the downscaling method for land surface temperature time series, 2) to identify regional thermal structure variations. We used weekly minimum and maximum surface temperature time series acquired by MODIS satellites at a spatial resolution of 1000 m and downscaled at 500 m using topographical variables. Two types of analyses were performed:

Copper reduction strategy for sangiovese in organic viticulture

Organic viticulture requires copper based treatments for bunch protection even though an intensive employment is no longer admitted because of its low leaching and phytotoxicity in the soil. UE Reg. 1981/2018 set copper employment to 4 kg/ha for year or 28 during 7 years with an absolute level allowed of 6 Kg/ha although those limits were decreased frequently.