Terroir 2020 banner
IVES 9 IVES Conference Series 9 Effect of fungi addition, root preparation, and other factors on the success of vine replacement in an established vineyard

Effect of fungi addition, root preparation, and other factors on the success of vine replacement in an established vineyard

Abstract

Dead or dying vines must be replaced regularly in order to ensure the sustainability of a vineyard. Successful plant replacement is crucial to maintain yield and quality by encouraging balanced root and leaf development in vines. However, young vines planted within an established vineyard encounter several problems, ranging from poor soil conditions to competition with older vines with well-established root systems.  

Aim: The aim of this project is to study the impact of plant material and plant replacement practices, including the addition of microorganisms.

Methods and Results: Three trials were set up in the Médoc region, north of Bordeaux. The first trial had four modalities in which two rootstocks, previously inoculated with arbuscular mycorrhizal fungi (AMF) or not, were planted in April 2019. The second trial was designed to study the influence of root preparation (bare roots versus balled roots) and the period of replacement of the plants, while the third trial, set up in 2018, crossed the modalities of the root preparation and mycorrhization. Measurements of plant recovery rate, nitrogen status of the leaves and development of shoots were carried out.

In the first trial, the mycorrhization of the plants did not reveal differences in terms of recovery. It did not induce a better development of the shoots or differences in nitrogen status in leaves. In contrast, the other mycorrhizal trial found shoots from mycorrhized plants had better growth, although this result was not confirmed in the second year. The two trials addressing root preparation found that plants with balled roots had better shoot growth and nitrogen status compared to bare rooted plants. However, these results are moderated by other parameters of the trials such as planting period, soil maintenance practices or choice of the rootstock.

Conclusions: 

These results are a first step to understand the effect of fungi addition and root preparation on success of vine replacement. To conclude on the interest of balled plants or mycorrhization, these measures on development and production should be continued until the first years of grape production.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Coralie Dewasme Laveau1*, Séverine Mary2, Anne Janoueix1, Virginie Lauvergeat1

1 University of Bordeaux, INRAE, Bordeaux Sciences Agro, EGFV, UMR1287, F-33140, Villenave d’Ornon, France
2 Vitinnov, University of Bordeaux, Bordeaux Sciences Agro, ISVV, 1 cours du Général de Gaulle, Gradignan, France

Contact the author

Keywords

Mycorrhization, rootstock, planting practices, shoots growth

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Aroma typicity of Timorasso wines: influence of ageing on volatile organic compounds and sensory descriptors

‘Timorasso’ is an autochthonous white grape variety from southern Piedmont (Italy) used for producing wines in the Colli Tortonesi product designation of origin (PDO). Over the last decade, there has been a notable rise in its production, due to the increased interest of wine enthusiasts who prized its wine distinctive ageing notes [1].

Influence of the year and the environmental factors on condensed tannins from Cabernet franc grapes

The composition in condensed tannins of the grape berries is essential for the quality of the harvest. Proanthocyanidins have a significant influence on the organoleptic properties of the red wines

Designing and managing a sustainable vineyard in a climate change scenario

Extension of the growing season, compression of the annual growth cycle and higher frequency and severity of weather extreme events are consistent features of global warming. While mitigation of factors causing global warming is necessary in the medium-long term, wine growers need “ready to go” adaptation practices to counteract negative effects bound to climate change. This must be done in a sustainably way, meaning that remunerative yield, desired grape quality, low production cost and environment friendly solutions must be effectively merged. In this work, we will review contribution given over the last two decades prioritizing issues related to scion and rootstock choice, changes in vineyard floor management, new perception related to the use of irrigation in vineyards, adaptation practices aimed at decompress maturity, solutions to counteract or minimize damages due to late frost and sunburn and, lastly, some hints on how precision viticulture can help with all of this.

Résistance stomatique et caractérisation hydrique des terroirs viticoles

The analysis of the distribution of natural plant populations allows an ecological characterization of cultivated environments in thermal, water and trophic terms; it guides the choice or selection of plants (or grape varieties) to cultivate (Astruc et al ., 1984, 1987; Delpoux, 1971; Jacquinet and Astruc, 1979). This approach has given good results in areas where the topography is the determining factor in the ecological differentiation of the terroirs.

Ethanol reduces grapevine water consumption by limiting transpiration

Studies suggest that ethanol (EtOH), triggers plant adaptation to various stresses at low concentrations (10 µM to 10 mM).