Terroir 2020 banner
IVES 9 IVES Conference Series 9 Application of fluorescence spectroscopy with multivariate analysis for authentication of Shiraz wines from different regions

Application of fluorescence spectroscopy with multivariate analysis for authentication of Shiraz wines from different regions

Abstract

Aim: To investigate the possibility of utilising simultaneous measurements of absorbance-transmittance and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics, as a robust method that gives rapid results for classification of wines from different regions of South Australia according to their Geographical Indication (GI), and to gain insight into the effect of terroir on inter regional variation.

Methods and Results: Additionally, to obtaining various colour parameters, the A-TEEM technique enables the “fingerprint” of wine samples to be attained in response to the presence of fluorophoric compounds. This is accomplished by recording a three-dimensional excitation-emission matrix (EEM) over multiple excitation and emission wavelengths, which can then be analysed using multivariate statistical modelling to classify wines. Shiraz wine samples (n = 134) from six different GIs of South Australia (Barossa Valley, Clare Valley, Eden Valley, Langhorne Creek, McLaren Vale, and Riverland) were analysed and absorbance spectra, hue, intensity, CIE L*a*b, CIE 1931, and EEMs were recorded for each sample. EEM data were evaluated according to the cross-validation model built with extreme gradient boost discriminant analysis (XGBDA) using score probability to assess the accuracy of classification according to the region of origin. Preliminary results have shown a high prediction ability and the data extracted from A-TEEM could be used to investigate phenolics as potential chemical markers that may provide effective regional discrimination.

Conclusions: 

The molecular fingerprinting capability and sensitivity of EEM in conjunction with multivariate statistical analysis of the fluorescence data using the XGBDA algorithm provided sufficient chemical/spectral information to facilitate accurate classification of Shiraz wines according to the region of origin. A-TEEM coupled with XGBDA modelling appears to be a promising tool for wine authentication according to its geographical origin.

Significance and Impact of the Study: Having tangible evidence that Australian fine wines may be discriminated on the basis of geographical origin, will help to improve the international reputation of Australian wines and increase global competitiveness. Understanding of the important regional chemical parameters would allow grape growers and winemakers to optimise their viticultural and winemaking practices to preserve these characteristics of their terroir. Moreover, verifying the content in the bottle according to the label descriptions with a rapid method, has the potential to verify product provenance and counteract fraud in cases where wine of inferior/questionable quality or contaminated wine is presented as originating from Australia.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

R.K.R. Ranaweeraa, A. M. Gilmoreb, D.L. Caponea, c, S.E.P. Bastiana,c, D.W Jefferya, c*

aDepartment of Wine and Food Science, The University of Adelaide, South Australia, Australia
bHORIBA Instruments Inc., 20 Knightsbridge Rd., Piscataway, NJ 08854, United States
cAustralian Research Council Training Centre for Innovative Wine Production, The University of Adelaide

Contact the author

Keywords

Geographical origin, chemometrics, modelling, excitation-emission matrix

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Chemical and sensory evolution of total and partial dealcoholized wine in a can

In recent years, wine consumption has been evolving towards new trends. On the one hand, awareness of health and responsible consumption has been growing, and with it, the demand for wines with lower or without alcohol content [1].

The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS)

 The manipulation of the genetic basis controlling grapevine adaptation and phenotypic plasticity can be performed either by classical genetics or biotechnologies.

Microbial resources for improving the sustainability in oenology

Sulphur dioxide has long been considered an irreplaceable additive due to its numerous significant positive effects during winemaking and beyond.

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

Résistance stomatique et caractérisation hydrique des terroirs viticoles

The analysis of the distribution of natural plant populations allows an ecological characterization of cultivated environments in thermal, water and trophic terms; it guides the choice or selection of plants (or grape varieties) to cultivate (Astruc et al ., 1984, 1987; Delpoux, 1971; Jacquinet and Astruc, 1979). This approach has given good results in areas where the topography is the determining factor in the ecological differentiation of the terroirs.