Terroir 2020 banner
IVES 9 IVES Conference Series 9 Application of fluorescence spectroscopy with multivariate analysis for authentication of Shiraz wines from different regions

Application of fluorescence spectroscopy with multivariate analysis for authentication of Shiraz wines from different regions

Abstract

Aim: To investigate the possibility of utilising simultaneous measurements of absorbance-transmittance and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics, as a robust method that gives rapid results for classification of wines from different regions of South Australia according to their Geographical Indication (GI), and to gain insight into the effect of terroir on inter regional variation.

Methods and Results: Additionally, to obtaining various colour parameters, the A-TEEM technique enables the “fingerprint” of wine samples to be attained in response to the presence of fluorophoric compounds. This is accomplished by recording a three-dimensional excitation-emission matrix (EEM) over multiple excitation and emission wavelengths, which can then be analysed using multivariate statistical modelling to classify wines. Shiraz wine samples (n = 134) from six different GIs of South Australia (Barossa Valley, Clare Valley, Eden Valley, Langhorne Creek, McLaren Vale, and Riverland) were analysed and absorbance spectra, hue, intensity, CIE L*a*b, CIE 1931, and EEMs were recorded for each sample. EEM data were evaluated according to the cross-validation model built with extreme gradient boost discriminant analysis (XGBDA) using score probability to assess the accuracy of classification according to the region of origin. Preliminary results have shown a high prediction ability and the data extracted from A-TEEM could be used to investigate phenolics as potential chemical markers that may provide effective regional discrimination.

Conclusions: 

The molecular fingerprinting capability and sensitivity of EEM in conjunction with multivariate statistical analysis of the fluorescence data using the XGBDA algorithm provided sufficient chemical/spectral information to facilitate accurate classification of Shiraz wines according to the region of origin. A-TEEM coupled with XGBDA modelling appears to be a promising tool for wine authentication according to its geographical origin.

Significance and Impact of the Study: Having tangible evidence that Australian fine wines may be discriminated on the basis of geographical origin, will help to improve the international reputation of Australian wines and increase global competitiveness. Understanding of the important regional chemical parameters would allow grape growers and winemakers to optimise their viticultural and winemaking practices to preserve these characteristics of their terroir. Moreover, verifying the content in the bottle according to the label descriptions with a rapid method, has the potential to verify product provenance and counteract fraud in cases where wine of inferior/questionable quality or contaminated wine is presented as originating from Australia.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

R.K.R. Ranaweeraa, A. M. Gilmoreb, D.L. Caponea, c, S.E.P. Bastiana,c, D.W Jefferya, c*

aDepartment of Wine and Food Science, The University of Adelaide, South Australia, Australia
bHORIBA Instruments Inc., 20 Knightsbridge Rd., Piscataway, NJ 08854, United States
cAustralian Research Council Training Centre for Innovative Wine Production, The University of Adelaide

Contact the author

Keywords

Geographical origin, chemometrics, modelling, excitation-emission matrix

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Intra-vineyard spatial variability explored over multiple seasons by sensor-based techniques in the Valpolicella area

The identification and management of intra-vineyard variability are key to precision viticulture, and sensors have been proven to be highly efficient tools for detecting these variations.

Climate change impact study based on grapevine phenology modelling

In this work we present a joint model of calculation the budbreak and full bloom starting dates which considers the heat sums and allows reliable estimations for five white wine grape varieties

Optimizing disease management in the Rioja wine region: a study on Erisiphe necator and the Gubler-Thomas model

Erisiphe necator is endemic in the Rioja Appellation of Origin. Vine growers exert significant effort to protect their crops, given the economic losses this disease causes. Different studies have shown that using Gubler-Thomas Model (GTM) can reduce treatments by up to 20% compared to a full-time protection strategy. This reduction is achieved by optimizing applications based on temperature variations in late spring and summer when the disease’s conidial stage is active.

H-NMR metabolic profiling of wines from three cultivars, three soil types and two contrasting vintages

Differences in wine flavour proceed primarily from grape quality. Environmental factors determined by the climate, soil and training systems modify many grape and wine quality traits. Metabolic profiling based on proton nuclear magnetic resonance (1H-NMR) spectra has been proved to be useful to study multifactorial effects of the vine environment on intricate grape quality traits. The capacity of this method to discriminate the environmental effects on wine has to be demonstrated.

Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Estimation of vineyard leaf area index (LAI) is an important aspect for the winegrowers. However, tracking and monitoring are difficult tasks due to time constraints. Satellite and unmanned aerial vehicle (UAV) imaging have become a practical monitoring method for LAI. Nevertheless, for a proper LAI determination, the image’s spatial resolution is a key factor, since low-resolution images are incapable of distinguishing between adjacent vines due to the large area covered in each pixel, this leads to misinterpretation or generalisation of vineyard information.