terclim by ICS banner
IVES 9 IVES Conference Series 9 What triggers the decision to ripen 

What triggers the decision to ripen 

Abstract

The decision for grape berries to ripen involves a complex interplay of genetic regulation and environmental cues. This review explores the molecular mechanisms underlying the transition from vegetative growth to ripening, focusing on transcriptomic studies and the role of the NAC gene family. Transcriptomic analyses reveal a significant rearrangement of gene expression patterns during this transition, with up-regulation of ripening-related genes and down-regulation of those associated with vegetative growth. A molecular phenology scale providing a high-precision map of berry transcriptomic development, indicates that key molecular changes occur well before the onset of ripening. Our recent investigations highlight the involvement of NAC genes in regulating berry ripening. Among these, NAC33 is implicated in terminating photosynthetic activity and organ growth, NAC60 orchestrates both ripening and senescence processes, and NAC61 regulates berry late- and post-ripening processes.Furthermore, coexpression, DAP-seq and physical interaction analyses, revealed the existence of a transcriptional hierarchy among NACs governing ripening decisions. This abstract provides insights into the molecular events driving grape berry ripening and sets the stage for further exploration of NAC-mediated regulatory mechanisms.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Sara Zenoni1*, Chiara Foresti1, Alessandra Amato1, Erica D’Incà1, Nicola Vitulo1, Mario Pezzotti1, Tomas Matus2, Giovanni Battista Tornielli3, Marianna Fasoli1

1 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
2 Institute for Integrative Systems Biology, I²SysBio (Universitat de València – CSIC), 46908, Paterna, Valencia, Spain
3 Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Viale dell’Università 16, 35020, Legnaro (PD), Italy

Contact the author*

Keywords

Ripening, Berry, Transcriptomic, Regulation, NAC

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of dehydration and maceration conditions on VOCs composition and olfactory profile of Moscato Bianco passito sweet wine

Among the Vitis vinifera L. cv. Moscato, Moscato Bianco is the oldest and most cultivated one in Europe (1). According to the OIV Focus 2015, Italy is the country with the largest cultivated area of Moscato Bianco with about 12500 hectares (2), that is used to produce well-known wines (i.e., Moscato Passito in Piedmont, Moscato di Trani in Puglia, and Moscatello di Montalcino in Tuscany), mainly obtained from partially dehydrated grapes (1). Different dehydration techniques can strongly modify the chemical compounds of oenological interest, among which Volatile Organic Compounds (VOCs) (1) that are the main responsible for the varietal sensory character of the final wine.

Enological characters of thirty vines in four different zones of Tuscany

In the last few years the development of HPLC techniques together with multivariate statistical methods allowed to set methodics of large discriminant and classing efficacy in the study of wine-grapes.

Characterization of vine performance using remote sensing tools

Today, a variety of remote sensing tools are used to characterise plant performance. However, the vine is rarely studied, as a major crop specificity is canopy discontinuity. Registered images of the vineyard are anisotropic, therefore difficult to analyse.

Intelligent use of ethanol for the direct quantitative determination of volatile compounds in spirit drinks

The quality of any alcoholic beverage depends on many parameters, such as cultivars, harvesting time, fermentation, distillation technology used, quality and type of wooden barrels (in case of matured drinks), etc.; however, the most important factor in their classification is content of volatile compounds.

Ceramic imprint in wine: influence of hydraulic ratio on ceramic dissolution and wine pH in amphorae systems

This interaction is primarily due to an acidic attack on the ceramic by the wine. It results in (1) the dissolution of the ceramic into the wine and the release of a wide variety of elements; and (2) an increase of the wine pH. The extent of these effects depends on the mineralogical and chemical composition of the ceramic, as well as the hydraulic ratio of the ceramic-wine system (the term hydraulic ratio (ρ) defines here the volume of wine over the surface area of the ceramic in contact with the wine).