Terroir 2020 banner
IVES 9 IVES Conference Series 9 Vintage by vine interactions most strongly influence Pinot noir grape and wine composition in New Zealand

Vintage by vine interactions most strongly influence Pinot noir grape and wine composition in New Zealand

Abstract

OENO One – Special issue

 Vine genetics, fruit maturity, region and vineyard are perceived as factors that strongly influence Pinot noir grape and wine composition. Our study aims to understand the relationship between grape (and ultimately wine) composition and the physical appearance and performance characteristics of a vine (i.e. vine ideotype). Our experimental approach controlled these variables by studying within-block differences in vine performance across multiple seasons and vineyards. Grapes were sourced at commercial harvest from 20 single vines from 12 vineyard sites in three Pinot noir growing regions (Central Otago, Martinborough and Marlborough) of New Zealand.
Across three vintages yields ranged from 0.1 kg to 6.3 kg per metre, but there was no general relationship between yield and berry soluble solids. On a vine by vine basis normalised yields did not correlate among seasons. Berry extract colour measures were, on average, three-fold higher in 2019 than in 2018.
Principal Component Analysis has indicated that vintage dominated berry composition effects that might otherwise be associated with yield per vine, region and vineyard. The extent of the variation in performance of the same vines between seasons largely excludes factors that are stable between seasons as primary causes. Changes in management of the same vine from year to year appeared the most likely contributors to variation. We have derived highly significant negative linear relationships between vine yield class and the frequency of vines that were within a benchmark specification established for icon vines, providing evidence of the quality risk associated with higher yield. The results also indicate that a proportion of vines meet the benchmark specification at higher yields. From results to date we can further our research confident in the knowledge that factors such as vine yield, region or vineyard are, in themselves, unlikely to be the principal drivers of major differences in Pinot noir grape and wine composition.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Damian Martin1*, Franzi Grab1 , Claire Grose1 , Lily Stuart1 , Claire Scofield2 , Andrew McLachlan3 and Tanya Rutan4

1 The New Zealand Institute for Plant and Food Research Limited, Marlborough
2 The New Zealand Institute for Plant and Food Research Limited, Clyde
2 The New Zealand Institute for Plant and Food Research Limited, Palmerston North
4 Bragato Research Institute, Marlborough

Contact the author

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Genetic diversity of Oenococcus oeni strains isolated from Yinchuan wine region in the East of Helan Mountain, China

Aim: This study aimed to isolate Oenococcus oeni in red wines from Yinchuan wine region in the East of Helan Mountain, China, and analysis their genetic diversity.

Methods and Results: Oenococcus oeni strains were isolated from Cabernet Sauvignon and Cabernet Gernischt wines of four

Genetic determinism of grapevine development stages as a tool for the adaptation to climate change

A major goal of modern grapevine (Vitis vinifera L.) breeding programs is the introgression of resistance genes along with desirable traits for better adaptation to climate change. Developmental stages have an impact on yield components and berry composition and are expected to shift towards earlier dates in the future. We investigated the genetic determinism of phenological stages in the progeny of a cross between two grapevine hybrids, each carrying several quantitative trait loci (QTL) for downy mildew and powdery mildew resistance.

Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

‘Pinot Precoce Noir’ (PPN) is an early ripening clone of ‘Pinot Noir’ (PN). The phenological differentiation is visible by an about two weeks earlier onset of veraison. It was found that the early veraison locus Ver1 on chromosome 16, previously identified in ‘Calardis Musqué’, originated from PPN. A highly correlated SSR marker, namely GF16-Ver1, was developed and tested for its ability to molecularly differentiate between PPN and PN as well as its potential to trace individual descendants.

Gamay and Gamaret winemaking processes using stems: impact on the wine chemical and organoleptic characteristics

AIM: Stalks are empirically known to bring many benefits to the wine such as alcoholic reduction, color protection or improvement of the tannic intensity. Not much used on Swiss grape varieties, the aim of this study was to identify the relevance of using this type of winemaking in the case of Gamay and Gamaret red grape varieties.

Grapevine yield estimation in a context of climate change: the GraY model

Grapevine yield is a key indicator to assess the impacts of climate change and the relevance of adaptation strategies in a vineyard landscape. At this scale, a yield model should use a number of parameters and input data in relation to the information available and be able to reproduce vineyard management decisions (e.g. soil and canopy management, irrigation). In this study, we used data from six experimental sites in Southern France (cv. Syrah) to calibrate a model of grapevine yield limited by water constraint (GraY). Each yield component (bud fertility, number of berries per bunch, berry weight) was calculated as a function of the soil water availability simulated by the WaLIS water balance model at critical phenological phases. The model was then evaluated in 10 grapegrowers’ plots, covering a diversity of biophysical and technical contexts (soil type, canopy size, irrigation, cover crop). We identified three critical periods for yield formation: after flowering on the previous year for the number of bunches and berries, around pre-veraison and post-veraison of the same year for mean berry weight. Yields were simulated with a model efficiency (EF) of 0.62 (NRMSE = 0.28). Bud fertility and number of berries per bunch were more accurately simulated (EF = 0.90 and 0.77, NRMSE = 0.06 and 0.10, respectively) than berry weight (EF = -0.31, NRMSE = 0.17). Model efficiency on the on-farm plots reached 0.71 (NRMSE = 0.37) simulating yields from 1 to 8 kg/plant. The GraY model is an original model estimating grapevine yield evolution on the basis of water availability under future climatic conditions.  It allows to evaluate the effects of various adaptation levers such as planting density, cover crop management, fruit/leaf ratio, shading and irrigation, in various production contexts.