Terroir 2020 banner
IVES 9 IVES Conference Series 9 Plant nitrogen assimilation and partitioning as a function of crop load

Plant nitrogen assimilation and partitioning as a function of crop load

Abstract

Aims: The optimization of nitrogen use efficiency (NUE, i.e. uptake, assimilation and partitioning) is a solution towards the sustainable production of premium wines, while reducing fertilization and environmental impact. The influence of crop load on the accumulation of N compounds in fruits is still poorly understood. The present study assesses the impacts of bunch thinning on NUE and the consequences on the free amino N (FAN) profile in fruits.

Methods and Results: A large crop load gradient was imposed by bunch thinning (0.5 to 2.5 kg m–2) in a homogeneous plot of 225 vines. Isotope-labelled foliar urea (10 atom % 15N) was applied on the canopy of the fertilized treatment at veraison. The plants were excavated at four phenological stages over the two seasons (bud burst, flowering, veraison and harvest) and were individually split into five plant parts (roots, trunk, canopy, pomace and must). Total nitrogen and its stable isotope composition were determined in each part, with the aim of monitoring NUE as a function of crop load and fertilization.

The N concentration in fruits either at veraison or at harvest was not related to crop load variation. N concentration was maintained in the must to the detriment of N content in the roots. The root dry weight was 15 % lower and the root N quantity 27 % lower under high yielding conditions (HYC, compared to low yielding conditions LYC). The fertilizer N uptake was 41 % higher under HYC than under LYC. Consequently, urea supply had a positive impact on the yeast assimilable N concentration in the must (+55 mg L-1) only under HYC. However, the must FAN profile was significantly affected by the crop load, suggesting a possible modification of the aroma potential, independently from fertilization and grape maturation.

Conclusion: 

Using a 15N-labeling method, we demonstrate that grapevine has a strong ability to regulate nitrogen uptake and reserve mobilization to maintain a constant fruit N concentration despite changes in crop load. Foliar-urea fertilization at veraison was more efficient under HYC and helped to fulfill grape N demand, while limiting the mobilization of N reserves. However, the crop load affected the must FAN profile, inducing a possible modification of the fruit aroma. 

Significance and Impact of the Study: These findings highlight the great capacity of plants to adapt their N metabolism to constraints, e.g. bunch thinning in this case. These results are important to improve perennial fruit crop production through higher fertilization efficiency and lower environmental impact. Without fertilization, plant nutrition can be enhanced through the optimization of agricultural practices. The root activity appears to be key for understanding the mechanisms that balance N nutrition in plants

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Thibaut Verdenal1, Vivian Zufferey1, Agnes Dienes-Nagy1, Olivier Viret2, Cornelis van Leeuwen3, Jorge Spangenberg4, Jean-Laurent Spring1

1Agroscope Institute, Av. Rochettaz 21, CH-1009 Pully, Switzerland
2Direction générale de l’agriculture, de la viticulture et des affaires vétérinaires (DGAV), Av. de Marcelin 29, CH-1110 Morges, Switzerland
3EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, F-33882 Villenave d’Ornon, France
4Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland

Contact the author

Keywords

Nitrogen partitioning, crop load, isotope labelling, amino acids, vines

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

New understanding on sulfites reactivity in wine

Sulfur dioxide is widely used during winemaking as an antioxidant and antimicrobial agent. Bisulfite (HSO3−), the predominant form of SO2 at wine pH, reacts with several wine components forming sulfonated adducts.

Comparison of tannin analysis by protein precipitation and normal-phase HPLC

Tannins are a heterogenous class of polymeric phenolics found in grapes, oak barrels and wine. In red wine tannins are primarily responsible for astringency, though they also have an important role in reacting with and stabilizing pigments. There are numerous sub-classes of tannins found in wine but they all share structural heterogeneity within each sub-class, with varied polymer composition, configuration and length.

Numerous methodologies exist for the quantification of tannins, however, protein precipitation using bovine serum albumin has proved itself useful due to its strong correlation to the sensory perception of astringency and the basic instruments required for the method. Though the method can yield valuable insights into tannin composition, it cannot be automated easily and necessitates well-trained personnel.

Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Heatwaves, defined as three or more consecutive days above average historical maximum temperatures, are having a significant impact on agricultural crop yields and quality, especially in arid or semi-arid regions with reduced water availability during the growing season.

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.
The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification.

Caracterización de las tierras de viña de Navarra

Este programa se enmarca dentro de las líneas de trabajo del Departamento de Agricultura, Ganadería y Alimentación del Gobiemo de Navarra y su objetivo general es conocer adecuadamente las