Terroir 2020 banner
IVES 9 IVES Conference Series 9 Plant nitrogen assimilation and partitioning as a function of crop load

Plant nitrogen assimilation and partitioning as a function of crop load

Abstract

Aims: The optimization of nitrogen use efficiency (NUE, i.e. uptake, assimilation and partitioning) is a solution towards the sustainable production of premium wines, while reducing fertilization and environmental impact. The influence of crop load on the accumulation of N compounds in fruits is still poorly understood. The present study assesses the impacts of bunch thinning on NUE and the consequences on the free amino N (FAN) profile in fruits.

Methods and Results: A large crop load gradient was imposed by bunch thinning (0.5 to 2.5 kg m–2) in a homogeneous plot of 225 vines. Isotope-labelled foliar urea (10 atom % 15N) was applied on the canopy of the fertilized treatment at veraison. The plants were excavated at four phenological stages over the two seasons (bud burst, flowering, veraison and harvest) and were individually split into five plant parts (roots, trunk, canopy, pomace and must). Total nitrogen and its stable isotope composition were determined in each part, with the aim of monitoring NUE as a function of crop load and fertilization.

The N concentration in fruits either at veraison or at harvest was not related to crop load variation. N concentration was maintained in the must to the detriment of N content in the roots. The root dry weight was 15 % lower and the root N quantity 27 % lower under high yielding conditions (HYC, compared to low yielding conditions LYC). The fertilizer N uptake was 41 % higher under HYC than under LYC. Consequently, urea supply had a positive impact on the yeast assimilable N concentration in the must (+55 mg L-1) only under HYC. However, the must FAN profile was significantly affected by the crop load, suggesting a possible modification of the aroma potential, independently from fertilization and grape maturation.

Conclusion: 

Using a 15N-labeling method, we demonstrate that grapevine has a strong ability to regulate nitrogen uptake and reserve mobilization to maintain a constant fruit N concentration despite changes in crop load. Foliar-urea fertilization at veraison was more efficient under HYC and helped to fulfill grape N demand, while limiting the mobilization of N reserves. However, the crop load affected the must FAN profile, inducing a possible modification of the fruit aroma. 

Significance and Impact of the Study: These findings highlight the great capacity of plants to adapt their N metabolism to constraints, e.g. bunch thinning in this case. These results are important to improve perennial fruit crop production through higher fertilization efficiency and lower environmental impact. Without fertilization, plant nutrition can be enhanced through the optimization of agricultural practices. The root activity appears to be key for understanding the mechanisms that balance N nutrition in plants

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Thibaut Verdenal1, Vivian Zufferey1, Agnes Dienes-Nagy1, Olivier Viret2, Cornelis van Leeuwen3, Jorge Spangenberg4, Jean-Laurent Spring1

1Agroscope Institute, Av. Rochettaz 21, CH-1009 Pully, Switzerland
2Direction générale de l’agriculture, de la viticulture et des affaires vétérinaires (DGAV), Av. de Marcelin 29, CH-1110 Morges, Switzerland
3EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, F-33882 Villenave d’Ornon, France
4Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland

Contact the author

Keywords

Nitrogen partitioning, crop load, isotope labelling, amino acids, vines

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Effects of rootstock and environment on the behaviour of autochthone grapevine varieties in the Douro region

In an experiment located at Quinta da Cavadinha, Sabrosa, Douro Region the behaviour of the varieties Touriga Nacional (TN), Tinta Barroca (TB), Touriga Franca

Estudio de la adaptación y del comportamiento productivo y enológico de variedades blancas foráneas en la zona vitícola del Penedés

Estudio comparativo del comportamiento de ocho variedades de viníferas blancas en el Penedés, injertadas sobre los portainjertos 41-B y 110-R.
Se describen los comportamientos

What is the best time to harvest grapes destined for withering? Ripeness and dehydration length affect phenolic composition of Nebbiolo grapes

Sfursat di Valtellina is a DOCG reinforced wine produced in Valtellina from partially withered red grapes of Vitis vinifera L. cv. Nebbiolo. The grape ripeness degree and the dehydration process strongly influence the physicochemical characteristics of grapes [1, 2, 3]. In particular, grape skin and seeds contain several classes of phenolic compounds strictly associated with red wine quality, which are significantly affected by these factors [4]. The aim of this research is to assess the combined influence of different ripeness levels and withering rates on the standard chemical composition and phenolic profile of winegrape in order to provide new insights and approaches to the management of withering, searching for the valorization of grape potentialities.

Mining terroir influence on bioactive polyphenols from grape stems: A correlation-network-driven approach to spatialize metabolomics data

In viticulture, the concept of terroir is often used to enlighten the environmental-based typicity of grapevines grown in a local area however its scientific basis remains under debate. Grape polyphenols as key player of the plant defense system enables adaptation to environmental changes and so far, form a unique metabolic component to investigate the terroir influence.

Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements

Aim: Regional characters relating to Shiraz in Australia are not well documented. This study aimed to characterize the sensory, chemical and climate profiles of wines from various Australian Shiraz producing regions.