Terroir 2020 banner
IVES 9 IVES Conference Series 9 Plant nitrogen assimilation and partitioning as a function of crop load

Plant nitrogen assimilation and partitioning as a function of crop load

Abstract

Aims: The optimization of nitrogen use efficiency (NUE, i.e. uptake, assimilation and partitioning) is a solution towards the sustainable production of premium wines, while reducing fertilization and environmental impact. The influence of crop load on the accumulation of N compounds in fruits is still poorly understood. The present study assesses the impacts of bunch thinning on NUE and the consequences on the free amino N (FAN) profile in fruits.

Methods and Results: A large crop load gradient was imposed by bunch thinning (0.5 to 2.5 kg m–2) in a homogeneous plot of 225 vines. Isotope-labelled foliar urea (10 atom % 15N) was applied on the canopy of the fertilized treatment at veraison. The plants were excavated at four phenological stages over the two seasons (bud burst, flowering, veraison and harvest) and were individually split into five plant parts (roots, trunk, canopy, pomace and must). Total nitrogen and its stable isotope composition were determined in each part, with the aim of monitoring NUE as a function of crop load and fertilization.

The N concentration in fruits either at veraison or at harvest was not related to crop load variation. N concentration was maintained in the must to the detriment of N content in the roots. The root dry weight was 15 % lower and the root N quantity 27 % lower under high yielding conditions (HYC, compared to low yielding conditions LYC). The fertilizer N uptake was 41 % higher under HYC than under LYC. Consequently, urea supply had a positive impact on the yeast assimilable N concentration in the must (+55 mg L-1) only under HYC. However, the must FAN profile was significantly affected by the crop load, suggesting a possible modification of the aroma potential, independently from fertilization and grape maturation.

Conclusion: 

Using a 15N-labeling method, we demonstrate that grapevine has a strong ability to regulate nitrogen uptake and reserve mobilization to maintain a constant fruit N concentration despite changes in crop load. Foliar-urea fertilization at veraison was more efficient under HYC and helped to fulfill grape N demand, while limiting the mobilization of N reserves. However, the crop load affected the must FAN profile, inducing a possible modification of the fruit aroma. 

Significance and Impact of the Study: These findings highlight the great capacity of plants to adapt their N metabolism to constraints, e.g. bunch thinning in this case. These results are important to improve perennial fruit crop production through higher fertilization efficiency and lower environmental impact. Without fertilization, plant nutrition can be enhanced through the optimization of agricultural practices. The root activity appears to be key for understanding the mechanisms that balance N nutrition in plants

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Thibaut Verdenal1, Vivian Zufferey1, Agnes Dienes-Nagy1, Olivier Viret2, Cornelis van Leeuwen3, Jorge Spangenberg4, Jean-Laurent Spring1

1Agroscope Institute, Av. Rochettaz 21, CH-1009 Pully, Switzerland
2Direction générale de l’agriculture, de la viticulture et des affaires vétérinaires (DGAV), Av. de Marcelin 29, CH-1110 Morges, Switzerland
3EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, F-33882 Villenave d’Ornon, France
4Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland

Contact the author

Keywords

Nitrogen partitioning, crop load, isotope labelling, amino acids, vines

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Future scenarios for viticultural climatic zoning in Europe

Climate is one of the main conditioning factors of winemaking. In this context, bioclimatic indices are a useful zoning tool, allowing the description of the suitability of a particular region

Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines

The phenolic component of red wine is responsible for important elements of flavor and mouthfeel, and thus quality of the finished wine. Additionally, many of these phenolics have been associated with health benefits such as reduction of the risk of developing cardiovascular disease, cancer, osteoporosis and preventing Alzheimer’s disease. While the origins, concentrations, and chemistries of the phenolics in a finished red wine are well known, the fundamental mechanisms and kinetics of extraction of these phenolics from grape skins and seeds during red wine fermentation are poorly understood. This lack of knowledge regarding the extraction mechanisms of phenolics during red wine fermentation makes informed manipulations of the finished wine’s phenolic composition difficult.

Alternative training system for cv ‘Erbaluce’: comparison between pergola and VSP system during 2006 and 2007 years

The ‘Erbaluce‘, a grapevine cultivar from which in the Canavese (Piedmont, Italy) different types of white DOC wines are obtained, is traditionally trained on a support structure commonly known as “pergola” having three to five long “cords” which consist of three cordons and canes interlaced together.

Wine archeochemistry: a multiplatform analytical approach to chemically profile shipwreck wines

The Cape of Storms (also known as Cape of Good Hope) is renowned for harbouring a multitude of shipwrecks due to the inherent treacherous coastline and blistering storms.

A nutraceutical based on mediterranean diet with omega-3 fatty acid and resveratrol from grapewine counteracts ocular degenerative diseases

More recently, studies have shown that polyphenols could also prevent or improve vision in patients with ocular diseases and especially Age-related macular degeneration (AMD) which is an eye disease characterized by damage to the central part of the retina, the macula, and that affects millions of people worldwide. Despite therapeutic advances thanks to the use of anti-vascular