Terroir 2020 banner
IVES 9 IVES Conference Series 9 Plant nitrogen assimilation and partitioning as a function of crop load

Plant nitrogen assimilation and partitioning as a function of crop load

Abstract

Aims: The optimization of nitrogen use efficiency (NUE, i.e. uptake, assimilation and partitioning) is a solution towards the sustainable production of premium wines, while reducing fertilization and environmental impact. The influence of crop load on the accumulation of N compounds in fruits is still poorly understood. The present study assesses the impacts of bunch thinning on NUE and the consequences on the free amino N (FAN) profile in fruits.

Methods and Results: A large crop load gradient was imposed by bunch thinning (0.5 to 2.5 kg m–2) in a homogeneous plot of 225 vines. Isotope-labelled foliar urea (10 atom % 15N) was applied on the canopy of the fertilized treatment at veraison. The plants were excavated at four phenological stages over the two seasons (bud burst, flowering, veraison and harvest) and were individually split into five plant parts (roots, trunk, canopy, pomace and must). Total nitrogen and its stable isotope composition were determined in each part, with the aim of monitoring NUE as a function of crop load and fertilization.

The N concentration in fruits either at veraison or at harvest was not related to crop load variation. N concentration was maintained in the must to the detriment of N content in the roots. The root dry weight was 15 % lower and the root N quantity 27 % lower under high yielding conditions (HYC, compared to low yielding conditions LYC). The fertilizer N uptake was 41 % higher under HYC than under LYC. Consequently, urea supply had a positive impact on the yeast assimilable N concentration in the must (+55 mg L-1) only under HYC. However, the must FAN profile was significantly affected by the crop load, suggesting a possible modification of the aroma potential, independently from fertilization and grape maturation.

Conclusion: 

Using a 15N-labeling method, we demonstrate that grapevine has a strong ability to regulate nitrogen uptake and reserve mobilization to maintain a constant fruit N concentration despite changes in crop load. Foliar-urea fertilization at veraison was more efficient under HYC and helped to fulfill grape N demand, while limiting the mobilization of N reserves. However, the crop load affected the must FAN profile, inducing a possible modification of the fruit aroma. 

Significance and Impact of the Study: These findings highlight the great capacity of plants to adapt their N metabolism to constraints, e.g. bunch thinning in this case. These results are important to improve perennial fruit crop production through higher fertilization efficiency and lower environmental impact. Without fertilization, plant nutrition can be enhanced through the optimization of agricultural practices. The root activity appears to be key for understanding the mechanisms that balance N nutrition in plants

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Thibaut Verdenal1, Vivian Zufferey1, Agnes Dienes-Nagy1, Olivier Viret2, Cornelis van Leeuwen3, Jorge Spangenberg4, Jean-Laurent Spring1

1Agroscope Institute, Av. Rochettaz 21, CH-1009 Pully, Switzerland
2Direction générale de l’agriculture, de la viticulture et des affaires vétérinaires (DGAV), Av. de Marcelin 29, CH-1110 Morges, Switzerland
3EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, F-33882 Villenave d’Ornon, France
4Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland

Contact the author

Keywords

Nitrogen partitioning, crop load, isotope labelling, amino acids, vines

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Polyphenol content examination of Tokaji Aszú wines

We must state that two conditions above are only prevalent in the case when the processed grapes are full or over ripened, besides following the Tokaj wines preparation criterions (grape variety, soil, microclimate, vintage, etc.). These two conditions mentioned before were followed up only sensory based analysis up to now, altough the study of chemical idetified compounds which confirms these are obviuos.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Astringency has been defined by the American Society for Testing Materials as “the complex of sensations due to shrinking, drawing or puckering of the epithelium as a result of exposure to substances such as alums or tannins”. Regarding the importance of astringency in wine consumer acceptance, elucidating the molecular mechanisms underpinning this complex sensation represents an important goal for scientists. Although different mechanisms have been described (Gibbins & Carpenter, 2013), the salivary protein precipitation is still the most accepted theory. According to this, wine astringency perceived in the oral cavity is originally attributed to the interaction and subsequence precipitation of salivary proteins by wine tannins –mainly flavanols–.

D-wines: use of LC-MS metabolomic space to discriminate italian mono-varietal red wines

Studying wine metabolome through multiple targeted methods is complicated and limitative; since grapes, yeasts, bacteria, oxygen, enological techniques and wine aging collaborate to deliver one of the richest metabolomic fingerprint.

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.