Terroir 2020 banner
IVES 9 IVES Conference Series 9 Plant nitrogen assimilation and partitioning as a function of crop load

Plant nitrogen assimilation and partitioning as a function of crop load

Abstract

Aims: The optimization of nitrogen use efficiency (NUE, i.e. uptake, assimilation and partitioning) is a solution towards the sustainable production of premium wines, while reducing fertilization and environmental impact. The influence of crop load on the accumulation of N compounds in fruits is still poorly understood. The present study assesses the impacts of bunch thinning on NUE and the consequences on the free amino N (FAN) profile in fruits.

Methods and Results: A large crop load gradient was imposed by bunch thinning (0.5 to 2.5 kg m–2) in a homogeneous plot of 225 vines. Isotope-labelled foliar urea (10 atom % 15N) was applied on the canopy of the fertilized treatment at veraison. The plants were excavated at four phenological stages over the two seasons (bud burst, flowering, veraison and harvest) and were individually split into five plant parts (roots, trunk, canopy, pomace and must). Total nitrogen and its stable isotope composition were determined in each part, with the aim of monitoring NUE as a function of crop load and fertilization.

The N concentration in fruits either at veraison or at harvest was not related to crop load variation. N concentration was maintained in the must to the detriment of N content in the roots. The root dry weight was 15 % lower and the root N quantity 27 % lower under high yielding conditions (HYC, compared to low yielding conditions LYC). The fertilizer N uptake was 41 % higher under HYC than under LYC. Consequently, urea supply had a positive impact on the yeast assimilable N concentration in the must (+55 mg L-1) only under HYC. However, the must FAN profile was significantly affected by the crop load, suggesting a possible modification of the aroma potential, independently from fertilization and grape maturation.

Conclusion: 

Using a 15N-labeling method, we demonstrate that grapevine has a strong ability to regulate nitrogen uptake and reserve mobilization to maintain a constant fruit N concentration despite changes in crop load. Foliar-urea fertilization at veraison was more efficient under HYC and helped to fulfill grape N demand, while limiting the mobilization of N reserves. However, the crop load affected the must FAN profile, inducing a possible modification of the fruit aroma. 

Significance and Impact of the Study: These findings highlight the great capacity of plants to adapt their N metabolism to constraints, e.g. bunch thinning in this case. These results are important to improve perennial fruit crop production through higher fertilization efficiency and lower environmental impact. Without fertilization, plant nutrition can be enhanced through the optimization of agricultural practices. The root activity appears to be key for understanding the mechanisms that balance N nutrition in plants

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Thibaut Verdenal1, Vivian Zufferey1, Agnes Dienes-Nagy1, Olivier Viret2, Cornelis van Leeuwen3, Jorge Spangenberg4, Jean-Laurent Spring1

1Agroscope Institute, Av. Rochettaz 21, CH-1009 Pully, Switzerland
2Direction générale de l’agriculture, de la viticulture et des affaires vétérinaires (DGAV), Av. de Marcelin 29, CH-1110 Morges, Switzerland
3EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, F-33882 Villenave d’Ornon, France
4Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland

Contact the author

Keywords

Nitrogen partitioning, crop load, isotope labelling, amino acids, vines

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

Aroma accumulation trends during berry development and selection of grape aroma candidate genes suitable for functional characterization

Grape flavour management in the vineyard requires knowledge of the derivation of individual flavour and aroma characteristics and the effects that different concentrations and interactions between these compounds have on flavour potential.

Beyond liking scores: the importance of the drinking experience to understand our consumers

The presentation will approach the understanding of wine consumers´ perception based on the experiential model suggested by Warell (2008). In this framework, wine consumption gives rise to a
variety of experiences related to the perception, understanding, and judgment of the product. These
multidimensional facets of the drinking experience can be explored by measuring affective, cognitive,
and sensory responses of consumers, which are shown to be stable regardless of the social context.

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character.

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.