Terroir 2020 banner
IVES 9 IVES Conference Series 9 Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Abstract

Aims: In previous work, five indigenous Pichia kluyveri strains, GS1-1, FS-2-7, HS-2-1, C730 and C732, were isolated and selected from spontaneous fermented wines from Ningxia and Gansu. The aims of this study were to 1) evaluate resistance of these strains to environmental stressors that may restrict their growth and the progress of alcoholic fermentation; 2) Investigate their fermentation dynamics; 3) Characterise aroma profiles of Cabernet Sauvignon wines made from mixed cultures of P. kluyveri and Saccharomyces cerevisiae

Methods and Results: Tolerance assays were conducted in YEPD medium to test resistance of each Pichia kluyveri strain to sugar, pH, ethanol, temperature and free SO2. All strains except FS-2-7 were able to tolerate 60% w/v glucose, low pH of 2.0, 16% v/v ethanol, extreme fermentation temperatures (11˚C and 44˚C), and 500 mg/L total SO2. Following this, these strains were inoculated into a synthetic grape juice medium to test their fermentation performance and evaluate basic parameters of the final synthetic wine. Strain HS-2-1 was the first to initiate fermentation, and produced significantly higher amounts of total organic acids and less volatile acids compared to other strains. Thus, strain HS-2-1 was chosen for further characterisation in Cabernet Sauvignon fermentation trials co-fermented with S. cerevisiae NX11424 at different ratios. Viable yeast cell numbers were determined by plate counting. Yeast-derived volatile compounds of the final wine were analysed using head space-solid phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC/MS). Mixed fermentation did not inhibit HS-2-1 growth, and also produced less volatile acid, and significantly more esters and higher alcohols compared to single fermentation by S. cerevisiae. Notably, concentrations of isopentanol, ethyl butyrate, ethyl hexanoate, ethyl octanoate, ethyl 9-decenoate and ethyl lactate increased in line with the increased proportion of HS-2-1 in the inoculum.

Conclusions: 

This study shows indigenous P. kluyveri HS-2-1 has good resistance to alcoholic fermentation associated common stressors, better fermentation performance, and excellent oenological characteristics when co-fermenting with S. cerevisiae

Significance and Impact of the Study: Chinese wine regions such as Ningxia and Gansu have developed dramatically in recent years. These wine regions are in great need to produce wines with typical regional characteristics. To promote regional typicity, using selected indigenous yeasts could introduce a unique local character or “terroir” during winemaking. Pichia kluyveri widely occurs at earlier stages of spontaneous fermentation, however limited research has been done on its oenological characteristics. This study comprehensively investigated the features of indigenous P. kluyveri strain(s), and highlighted the potential application of strain HS-2-1 in winemaking by co-fermenting with S. cerevisiae for improving the fruity and floral aroma profile of these Chinese wines.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

iao Jiang1, Wenjing Zhang1, Li Feng1, Dongqing Ye1, Yanlin Liu1,2*

1College of Enology, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
2Shaanxi Engineering Research Center for Viti-viniculture, Yangling, Shaanxi 712100, China

Contact the author

Keywords

Pichia kluyveri, stress tolerance, fermentation, volatile compounds, aroma  

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Achieving Tropical Fruit Aromas in White Wine through Innovative Winemaking Processes

Tropical fruit aroma is highly desirable in certain white wine styles and there is a significant group of consumers that show preference for this aroma.

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines.

The relationship between wind exposure and viticultural performance of Vitis vinifera L. cv. Merlot in a coastal vineyard (South Africa)

The South Western Cape of South Africa is exposed to strong southerly and south easterly synoptic winds during the growth period of the grapevine. The development of sea breezes in the afternoon is also a phenomenon associated with the ripening period of grapes cultivated in this coastal area. Wind is one of the environmental variables having the greatest spatial variation but the implications of regular exposure to wind for the performance of the grapevine has not yet been determined for vineyards in the South Western Cape. This study was initiated to meet this need.
The study was conducted in a hedge-trellised vineyard of Vitis vinifera L. cv Merlot with north east – south west row direction. Thirty experimental sites, each consisting of 14 vines, were identified as being exposed to wind or sheltered based on hand-held anemometer readings during the 2001/2002 season. Four stationary anemometers were strategically positioned between the thirty sites. Stomatal conductance and leaf temperature were measured with a PP systems porometer. Vegetative and yield measurements were performed during the 2002/2003 season. The t-test of equal variance was used to determine significant differences in measured parameters between exposed and sheltered grapevines.
Stomatal conductance and leaf area were significantly reduced by exposure to wind. This was associated with a significant reduction in the leaf area of primary shoots, related to shorter shoots, but a significant augmentation of secondary shoot leaf number and area. The number of bunches per vine and yield were also reduced for exposed vines. The berry potassium content was significantly increased for exposed grapevines.
This demonstrates that exposure to wind can result in significant within-vineyard, and potentially between-vineyard, variability in grapevine physiology, vegetative growth, yield and berry composition, with implications for wine style and quality.

Free amino acid composition of must from 7 Vitis vinifera L. cv. in Latium (Italy)

Free amino acid concentrations in must of 7 Vitis vinifera cultivars (Cabernet Franc, Syrah, Merlot, Montepulciano, Sangiovese, Cesanese d’Affile, Carmenere) grown in the Latium region (Italy) were monitored from 2003 to 2005. The cultivars were located in a homogeneous soil and climatic zone and with the same training system (Cordon Spur).

Territoires et zones viticoles. Aspects climatiques, pédologiques, agronomiques. Caractérisation des terroirs viticoles: une étude systémique

On assiste actuellement à l’émergence d’une demande sociale forte à l’égard de fonctions par ailleurs traditionnelles de l’agriculture, qui concernent la gestion des ressources du milieu, le maintien d’un tissu social rural, la valorisation des territoires ruraux et l’entretien des paysages.