Terroir 2020 banner
IVES 9 IVES Conference Series 9 Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Abstract

Aims: In previous work, five indigenous Pichia kluyveri strains, GS1-1, FS-2-7, HS-2-1, C730 and C732, were isolated and selected from spontaneous fermented wines from Ningxia and Gansu. The aims of this study were to 1) evaluate resistance of these strains to environmental stressors that may restrict their growth and the progress of alcoholic fermentation; 2) Investigate their fermentation dynamics; 3) Characterise aroma profiles of Cabernet Sauvignon wines made from mixed cultures of P. kluyveri and Saccharomyces cerevisiae

Methods and Results: Tolerance assays were conducted in YEPD medium to test resistance of each Pichia kluyveri strain to sugar, pH, ethanol, temperature and free SO2. All strains except FS-2-7 were able to tolerate 60% w/v glucose, low pH of 2.0, 16% v/v ethanol, extreme fermentation temperatures (11˚C and 44˚C), and 500 mg/L total SO2. Following this, these strains were inoculated into a synthetic grape juice medium to test their fermentation performance and evaluate basic parameters of the final synthetic wine. Strain HS-2-1 was the first to initiate fermentation, and produced significantly higher amounts of total organic acids and less volatile acids compared to other strains. Thus, strain HS-2-1 was chosen for further characterisation in Cabernet Sauvignon fermentation trials co-fermented with S. cerevisiae NX11424 at different ratios. Viable yeast cell numbers were determined by plate counting. Yeast-derived volatile compounds of the final wine were analysed using head space-solid phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC/MS). Mixed fermentation did not inhibit HS-2-1 growth, and also produced less volatile acid, and significantly more esters and higher alcohols compared to single fermentation by S. cerevisiae. Notably, concentrations of isopentanol, ethyl butyrate, ethyl hexanoate, ethyl octanoate, ethyl 9-decenoate and ethyl lactate increased in line with the increased proportion of HS-2-1 in the inoculum.

Conclusions: 

This study shows indigenous P. kluyveri HS-2-1 has good resistance to alcoholic fermentation associated common stressors, better fermentation performance, and excellent oenological characteristics when co-fermenting with S. cerevisiae

Significance and Impact of the Study: Chinese wine regions such as Ningxia and Gansu have developed dramatically in recent years. These wine regions are in great need to produce wines with typical regional characteristics. To promote regional typicity, using selected indigenous yeasts could introduce a unique local character or “terroir” during winemaking. Pichia kluyveri widely occurs at earlier stages of spontaneous fermentation, however limited research has been done on its oenological characteristics. This study comprehensively investigated the features of indigenous P. kluyveri strain(s), and highlighted the potential application of strain HS-2-1 in winemaking by co-fermenting with S. cerevisiae for improving the fruity and floral aroma profile of these Chinese wines.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

iao Jiang1, Wenjing Zhang1, Li Feng1, Dongqing Ye1, Yanlin Liu1,2*

1College of Enology, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
2Shaanxi Engineering Research Center for Viti-viniculture, Yangling, Shaanxi 712100, China

Contact the author

Keywords

Pichia kluyveri, stress tolerance, fermentation, volatile compounds, aroma  

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

Selective and sensitive quantification of wine biogenic amines using a dispersive solid-phase extraction clean-up/concentration method

Biogenic amines exist in numerous foods, including wine. They can have aliphatic (putrescine, cadaverine, spermine, and spermidine), aromatic (tyramine and phenylethylamine) and heterocyclic structure (histamine and tryptamine)

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.

Fast, and full microbiological wine analysis using triple cellular staining.

We propose here a brand new large routine microbiological analysis method intended for oenology, in flow cytometry, using high performance equipment and triple selective cell staining, activated by fluorescence. The results and practical applications of the method are presented: Brettanomyces (Dekkera) Monitoring, fermentations monitoring, bottling and enological practices monitoring.The method allow a complete new microbiological tool for wine industry.The method has been accredited ISO 17025 in our laboratories.

Extraction-modelling approach demonstrates grapevine rooting patterns varies significantly as a result of contrasting ground management and growing environment in cover cropped vineyards

The use of cover crops in viticulture has increased in recent decades as growers seek to reduce herbicide use, improve soil organic matter and biodiversity, and minimize soil-related agronomic issues such as compaction and erosion.