Terroir 2020 banner
IVES 9 IVES Conference Series 9 Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Abstract

Aims: In previous work, five indigenous Pichia kluyveri strains, GS1-1, FS-2-7, HS-2-1, C730 and C732, were isolated and selected from spontaneous fermented wines from Ningxia and Gansu. The aims of this study were to 1) evaluate resistance of these strains to environmental stressors that may restrict their growth and the progress of alcoholic fermentation; 2) Investigate their fermentation dynamics; 3) Characterise aroma profiles of Cabernet Sauvignon wines made from mixed cultures of P. kluyveri and Saccharomyces cerevisiae

Methods and Results: Tolerance assays were conducted in YEPD medium to test resistance of each Pichia kluyveri strain to sugar, pH, ethanol, temperature and free SO2. All strains except FS-2-7 were able to tolerate 60% w/v glucose, low pH of 2.0, 16% v/v ethanol, extreme fermentation temperatures (11˚C and 44˚C), and 500 mg/L total SO2. Following this, these strains were inoculated into a synthetic grape juice medium to test their fermentation performance and evaluate basic parameters of the final synthetic wine. Strain HS-2-1 was the first to initiate fermentation, and produced significantly higher amounts of total organic acids and less volatile acids compared to other strains. Thus, strain HS-2-1 was chosen for further characterisation in Cabernet Sauvignon fermentation trials co-fermented with S. cerevisiae NX11424 at different ratios. Viable yeast cell numbers were determined by plate counting. Yeast-derived volatile compounds of the final wine were analysed using head space-solid phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC/MS). Mixed fermentation did not inhibit HS-2-1 growth, and also produced less volatile acid, and significantly more esters and higher alcohols compared to single fermentation by S. cerevisiae. Notably, concentrations of isopentanol, ethyl butyrate, ethyl hexanoate, ethyl octanoate, ethyl 9-decenoate and ethyl lactate increased in line with the increased proportion of HS-2-1 in the inoculum.

Conclusions: 

This study shows indigenous P. kluyveri HS-2-1 has good resistance to alcoholic fermentation associated common stressors, better fermentation performance, and excellent oenological characteristics when co-fermenting with S. cerevisiae

Significance and Impact of the Study: Chinese wine regions such as Ningxia and Gansu have developed dramatically in recent years. These wine regions are in great need to produce wines with typical regional characteristics. To promote regional typicity, using selected indigenous yeasts could introduce a unique local character or “terroir” during winemaking. Pichia kluyveri widely occurs at earlier stages of spontaneous fermentation, however limited research has been done on its oenological characteristics. This study comprehensively investigated the features of indigenous P. kluyveri strain(s), and highlighted the potential application of strain HS-2-1 in winemaking by co-fermenting with S. cerevisiae for improving the fruity and floral aroma profile of these Chinese wines.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

iao Jiang1, Wenjing Zhang1, Li Feng1, Dongqing Ye1, Yanlin Liu1,2*

1College of Enology, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
2Shaanxi Engineering Research Center for Viti-viniculture, Yangling, Shaanxi 712100, China

Contact the author

Keywords

Pichia kluyveri, stress tolerance, fermentation, volatile compounds, aroma  

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

From fruit set to ripening, the grape berry mesocarp experiences a wide range of dynamic physical, physiological, and biochemical changes, such as mesocarp cell death (MCD) and hydraulic isolation. The premature occurrence of such events is a characteristic of the Niagara Rosada (NR) variety, utilised as table grapes and winemaking. In our opinion, the onset of ripening would not cause MCD, but a down-regulation of respiratory enzymes during the early loss of cell viability, while maintaining membrane integrity. For this, we investigated three distinct developmental stages (green (E-L33), veraison (E-L35), and ripe (E-L39)) of NR berries by label-free proteomics, enzymatic respiratory activity and outer mesocarp imaging. Cell wall-modifying proteins were found to accumulate differently throughout ripening, while cytoplasmic membranes continue intact.

Identification of cis-2-methyl-4-propyl-1,3-oxathiane as a new volatile sulfur compound (VSC) in wine

Despite their trace concentrations, volatile sulfur compounds (VSCs) are an important category of flavour-active compounds that significantly contribute to desirable or undesirable aromas of many foods and beverages. In wines, VSCs in the form of polyfunctional thiols, notably 3-sulfanylhexan-1-ol (3-SH), 3-sulfanylhexyl acetate (3-SHA), and 4-sulfanyl-4-methyl-pentan-2-one (4-MSP), possess extremely low olfactory thresholds (≈ ng/L) and pleasant “tropical aroma” notes. They have received much attention with respect to their sensory contributions, quantitative occurrences, biogenesis, and thiol management through viticulture and winemaking. However, the fate of these potent volatiles are still not fully understood.

Chemical and sensory diversity of regional Cabernet-Sauvignon wines

AIM: To investigate chemical and sensory drivers of regional typicity of Cabernet Sauvignon from different geographical regions of Australia.

Preliminary characterisation of mannoproteins from different wine yeast strains and impact on wine properties

Mannoproteins (MPs) are released from the yeast cell wall during alcoholic fermentation and aging on the lees, and influence aspects of wine quality such as haze formation and colour stability. Yet, as this is a slow process with microbiological and sensory risks, the exogenous addition of extracted MPs poses an efficient alternative. While Saccharomyces cerevisiae has long been studied as a prominent source for MPs extraction, their structure and composition greatly differ between yeast species. This may influence their behaviour in the wine matrix and subsequent impact on wine properties. However, although wine yeast species other than S. cerevisiae possibly present an untapped source of MPs, they are still ill-characterised in terms of chemical composition and influence on wine.

Geographical indication “Brandy Italiano”: study on the influence of wood barrel toasting and natural seasoning on endogenous and wood-derived compounds of aged distillates

The European geographical indication (GI) Brandy Italiano is exclusively reserved to brandy obtained in Italy from the distillation of wine from grapes grown and vinified in the national territory [1].