Terroir 2020 banner
IVES 9 IVES Conference Series 9 Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Abstract

Aims: In previous work, five indigenous Pichia kluyveri strains, GS1-1, FS-2-7, HS-2-1, C730 and C732, were isolated and selected from spontaneous fermented wines from Ningxia and Gansu. The aims of this study were to 1) evaluate resistance of these strains to environmental stressors that may restrict their growth and the progress of alcoholic fermentation; 2) Investigate their fermentation dynamics; 3) Characterise aroma profiles of Cabernet Sauvignon wines made from mixed cultures of P. kluyveri and Saccharomyces cerevisiae

Methods and Results: Tolerance assays were conducted in YEPD medium to test resistance of each Pichia kluyveri strain to sugar, pH, ethanol, temperature and free SO2. All strains except FS-2-7 were able to tolerate 60% w/v glucose, low pH of 2.0, 16% v/v ethanol, extreme fermentation temperatures (11˚C and 44˚C), and 500 mg/L total SO2. Following this, these strains were inoculated into a synthetic grape juice medium to test their fermentation performance and evaluate basic parameters of the final synthetic wine. Strain HS-2-1 was the first to initiate fermentation, and produced significantly higher amounts of total organic acids and less volatile acids compared to other strains. Thus, strain HS-2-1 was chosen for further characterisation in Cabernet Sauvignon fermentation trials co-fermented with S. cerevisiae NX11424 at different ratios. Viable yeast cell numbers were determined by plate counting. Yeast-derived volatile compounds of the final wine were analysed using head space-solid phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC/MS). Mixed fermentation did not inhibit HS-2-1 growth, and also produced less volatile acid, and significantly more esters and higher alcohols compared to single fermentation by S. cerevisiae. Notably, concentrations of isopentanol, ethyl butyrate, ethyl hexanoate, ethyl octanoate, ethyl 9-decenoate and ethyl lactate increased in line with the increased proportion of HS-2-1 in the inoculum.

Conclusions: 

This study shows indigenous P. kluyveri HS-2-1 has good resistance to alcoholic fermentation associated common stressors, better fermentation performance, and excellent oenological characteristics when co-fermenting with S. cerevisiae

Significance and Impact of the Study: Chinese wine regions such as Ningxia and Gansu have developed dramatically in recent years. These wine regions are in great need to produce wines with typical regional characteristics. To promote regional typicity, using selected indigenous yeasts could introduce a unique local character or “terroir” during winemaking. Pichia kluyveri widely occurs at earlier stages of spontaneous fermentation, however limited research has been done on its oenological characteristics. This study comprehensively investigated the features of indigenous P. kluyveri strain(s), and highlighted the potential application of strain HS-2-1 in winemaking by co-fermenting with S. cerevisiae for improving the fruity and floral aroma profile of these Chinese wines.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

iao Jiang1, Wenjing Zhang1, Li Feng1, Dongqing Ye1, Yanlin Liu1,2*

1College of Enology, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
2Shaanxi Engineering Research Center for Viti-viniculture, Yangling, Shaanxi 712100, China

Contact the author

Keywords

Pichia kluyveri, stress tolerance, fermentation, volatile compounds, aroma  

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

From geomorphological analysis to terroirs geo-pedological zonation: the Madiran and Pacherenc of Vic-Bilh A.O.C. as case of study

L’aire des A.O.C. Madiran et Pacherenc du Vic-Bilh est située sur le piémont nord-occidental des Pyrénées, au nord du cône de Ger.

Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

The study was carried out in 2006 with Merlot grapes from vines grown using the trellis system, where four treatments were compared with different levels of water stress.

Analysis of Cabernet Sauvignon and Aglianico winegrape (V. vinifera L.) responses to different pedo-climatic environments in southern Italy

Water deficit is one of the most important effects of climate change able to affect agricultural sectors. In general, it determines a reduction in biomass production, and for some plants, as in the case of grapevine, it can endorse fruit quality. The monitoring and management of plant water stress in the vineyard

Creativini: an augmented reality card game to promote the learning of the reasoning process of a technical management route for making wine 

Nowadays, the entire viticultural and enological process is wisely thought out according to the style of wine to be produced and the local climatic conditions. Acquiring the approach of a technical management route specific for wine production remains a complex learning process for students. To enhance such learning, The Ecole d’Ingénieurs de PURPAN (PURPAN), an engineering school located in Toulouse southwest France, has recently developed Creativini, a collaborative card game in English made of 150 cards spread into 14 batches. Students in groups of 3 to 6 must design a technical production route, from plant material to bottling.

Techniques to study graft union formation in grapevine 

Grapevines are grown grafting in most viticultural regions. Grapevine rootstocks are either hybrids or pure species of different American Vitis spp. (particularly V. berlandieri, V. rupestris and V. riparia), which are primarily used to provide root resistance to the insect pest Phylloxera. In addition to Phylloxera resistance, ideally grapevine rootstocks should be resistant to other soil borne pathogens and adapted to abiotic stress conditions. New rootstocks have the potential to adapt agriculture to climate change without changing the characteristics of the harvested product. However, high grafting success rates are an essential prerequisite.