Terroir 2020 banner
IVES 9 IVES Conference Series 9 Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Abstract

Aims: In previous work, five indigenous Pichia kluyveri strains, GS1-1, FS-2-7, HS-2-1, C730 and C732, were isolated and selected from spontaneous fermented wines from Ningxia and Gansu. The aims of this study were to 1) evaluate resistance of these strains to environmental stressors that may restrict their growth and the progress of alcoholic fermentation; 2) Investigate their fermentation dynamics; 3) Characterise aroma profiles of Cabernet Sauvignon wines made from mixed cultures of P. kluyveri and Saccharomyces cerevisiae

Methods and Results: Tolerance assays were conducted in YEPD medium to test resistance of each Pichia kluyveri strain to sugar, pH, ethanol, temperature and free SO2. All strains except FS-2-7 were able to tolerate 60% w/v glucose, low pH of 2.0, 16% v/v ethanol, extreme fermentation temperatures (11˚C and 44˚C), and 500 mg/L total SO2. Following this, these strains were inoculated into a synthetic grape juice medium to test their fermentation performance and evaluate basic parameters of the final synthetic wine. Strain HS-2-1 was the first to initiate fermentation, and produced significantly higher amounts of total organic acids and less volatile acids compared to other strains. Thus, strain HS-2-1 was chosen for further characterisation in Cabernet Sauvignon fermentation trials co-fermented with S. cerevisiae NX11424 at different ratios. Viable yeast cell numbers were determined by plate counting. Yeast-derived volatile compounds of the final wine were analysed using head space-solid phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC/MS). Mixed fermentation did not inhibit HS-2-1 growth, and also produced less volatile acid, and significantly more esters and higher alcohols compared to single fermentation by S. cerevisiae. Notably, concentrations of isopentanol, ethyl butyrate, ethyl hexanoate, ethyl octanoate, ethyl 9-decenoate and ethyl lactate increased in line with the increased proportion of HS-2-1 in the inoculum.

Conclusions: 

This study shows indigenous P. kluyveri HS-2-1 has good resistance to alcoholic fermentation associated common stressors, better fermentation performance, and excellent oenological characteristics when co-fermenting with S. cerevisiae

Significance and Impact of the Study: Chinese wine regions such as Ningxia and Gansu have developed dramatically in recent years. These wine regions are in great need to produce wines with typical regional characteristics. To promote regional typicity, using selected indigenous yeasts could introduce a unique local character or “terroir” during winemaking. Pichia kluyveri widely occurs at earlier stages of spontaneous fermentation, however limited research has been done on its oenological characteristics. This study comprehensively investigated the features of indigenous P. kluyveri strain(s), and highlighted the potential application of strain HS-2-1 in winemaking by co-fermenting with S. cerevisiae for improving the fruity and floral aroma profile of these Chinese wines.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

iao Jiang1, Wenjing Zhang1, Li Feng1, Dongqing Ye1, Yanlin Liu1,2*

1College of Enology, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
2Shaanxi Engineering Research Center for Viti-viniculture, Yangling, Shaanxi 712100, China

Contact the author

Keywords

Pichia kluyveri, stress tolerance, fermentation, volatile compounds, aroma  

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Macromolecular characterization of disease resistant red wine varieties (PIWI)

Pilzwiderstandsfähige (PIWI) are disease resistant Vitis vinifera interspecific hybrid varieties that are receiving increasing attention for ability to ripen in cool climates and their resistance to grapevine fungal diseases. Wines produced from these varieties have not been characterized, especially regarding their macromolecular composition. This study characterised and quantified colloid-forming molecules (proteins, polysaccharides and phenolics) of red PIWI wines produced in the UK. METHODS: In 2019 6 wines were made from the PIWI varieties Rondo, Cabernet Jura, Cabernet Cortis, Cabernet Noir, Regent and Cabertin grown at the Plumpton Rock Lodge Vineyard in Sussex (UK) and harvested at similar level of maturity (TSS, pH and TA). All juice was chaptalized to the same potential alcohol of 12%. Small scale winemaking (1L) was performed in quadruplicate using Bodum® coffee plungers to manage maceration [1]. Residual sugar content, pH, and titratable acidity were monitored during fermentation. For finished wines, the protein and polysaccharide content was measured by HPLC-SEC [2], while the total phenolic content was assessed using the Folin-Ciocalteau method [3]. The protein profile of the wines was further investigated by SDS-PAGE [4]. RESULTS: Fermentations (n=24) were all carried out to completion within 8 days.

Budburst delay and berry ripening after vegetal oil application in Austria

Occurrence of freezing temperatures in early spring when grapevine shoots are developing is termed late frost in viticulture. Young green tissues are very sensible to temperatures below zero and damages often lead to important yield and quality losses such as the case in Europe in 2017. An indirect method to avoid late frost damage in vineyards consist in delaying the budburst. Previous research reported similar effects by applying vegetal oil on dormant buds. Here, we tested the application of rapeseed vegetal oil during late winter to delay the budburst on two V.vinifera cultivars of interest in Austria, Grüner Veltliner (GV) and Zweigelt (ZW).

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

he final concentration of phenolic compounds in the wines is usually lower than what might be expected given the phenolic concentration measured in grapes

Measurement of grape vine growth for model evaluation

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004.