Terroir 2020 banner
IVES 9 IVES Conference Series 9 Terroir in Tasting: A sensory approach for marketing fine Australian wines of provenance as memorable experiences

Terroir in Tasting: A sensory approach for marketing fine Australian wines of provenance as memorable experiences

Abstract

Aims: Establishing an image of fine wine through the Geographical Indication (GI) system is of interest to the Australian wine sector. Beyond provenance, the sensory experience of fine wine is often linked to consumption with appropriate foods. For this purpose, studies were undertaken to understand consumer perceptions of what constitutes a fine wine, which sensory and chemical factors may define fine Australian Chardonnay and Shiraz wines from various regions, the sensory attributes driving appropriate food and wine pairings, and how these relate to consumer perceptions of provenance, the overall consumer experience and memorability. 

Methods and Results: An online survey was conducted with Australian wine consumers (n = 349) to generate a consumer driven definition of fine Australian wine (FAW) based on sensory attributes, grape variety, wine region, label information, and food pairing, and to assess how that definition differs as a function of consumer wine involvement. Overall, consumers valued provenance, and highly involved wine Enthusiasts appeared to utilise more information and had broader sensory vocabularies than Aspirant and No Frills consumers. Exploring the regional typicality of commercially available FAW, Chardonnay wines (2015 vintage) from Margaret River (n = 16) and Yarra Valley (n = 16); and Shiraz wines (2014 vintage) from Barossa Valley (n = 16) and McLaren Vale (n = 15), were selected for descriptive sensory analysis and underwent profiling of volatiles by gas chromatography-mass spectrometry. For both grape varieties, there was large variability in wine styles within the same GI, meaning winemaking intervention is important for regional/sub-regional typicality, which therefore cannot be determined solely on geographic origin of the fruit. Nonetheless, a combination of sensory markers and volatile profiles allowed the building of regional typicality models, although consumers may not perceive subtle sub-regional differences in sensory attributes. The food and wine pairing-related gastronomic experiences were explored under blind and informed (wine provenance) conditions. Based on descriptive analyses, specific food and wine pairings (n = 8) were selected for consumer tastings (n = 151), which explored the pre-consumption, core-consumption, and post-consumption experiences in relation to the sensory profiles of the pairings. During core-consumption, information level significantly impacted ratings for sensory complexity and a range of emotions. Appropriate pairings corresponded with increased liking, sensory complexity, and expected prices for wine, and evoked emotions of positive valence. In the post-consumption experience, information level affected the vividness of the tasting, whereas the most appropriate pairings commanded significant vividness, remembered liking, memorability, and loyalty ratings.

Conclusion: 

Although regional typicality can be modelled using volatile composition and sensory attributes, consumers may not perceive these differences in tasting. The results from this study of sensory profiles and preferred food pairings for FAW from several regions can help the wine production, marketing and hospitality sectors tailor their services and communications to incorporate fine wines in their region-specific marketing. Consequently, appropriate food and wine pairings may be an important marketing strategy to develop and promote provenance and positive gastronomic experiences, and using a Wine:Food strategy, rather than wine alone, could provide wine businesses with higher customer satisfaction and spending

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Marcell Kustos1*, David W. Jeffery1, Steven Goodman2, Hildegarde Heymann3, Susan E.P. Bastian1

1School of Agriculture, Food and Wine, The University of Adelaide (UA), Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064 Australia
2Business School, The University of Adelaide, South Australia 5005 Australia
3Department of Viticulture and Enology, University of California at Davis, One Shields Avenue, Davis, CA 95616-5270, USA

Contact the author

Keywords

Wine attributes, sensory memory, food pairing, emotion measurement, wine marketing, wine business

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Applications pratiques du zonage vitivinicole

Le zonage vitivinicole présente toute une série d’applications pratiques. Son importance est en train d’augmenter, soit en fonction des moyens techniques chaque fois plus performants, qui rendent possible le développement des zonages de plus en plus intégrées, consistants et utiles, soit en fonction d’un marché de plus en plus mondialisé. L’article situe la contribution du zonage au niveau de la production vitivinicole et du développement du territoire.

Grape phylloxera leaf-feeding populations in commercial vineyards – a new biotype ?

Grape Phylloxera (Daktulosphaira vitifoliae Fitch) ordinarily has great difficulty establishing leaf galls on the European Grapevine (VitisviniferaL.). Yet populations of leaf-feeding Phylloxera are increasingly being observed throughout commercial vineyards world-wide. Effective plant protection strategies including quarantine actions are currently missing to fight, grape phylloxera populations in affected vineyards and combat linked negative effects on vines and yield. Contrary to the otherwise mandatory continuous infestation pressure from externally established populations (e.g. from populations developed on rootstock foliage or other interspecific hybrids, these leaf-feeding populations seem to establish themselves annually.

Study of wine-growing land (“terroir”) characteristics in the canton of Vaud (Switzerland): ecophysiological behaviour of the vine (cv. Chasselas)

A study of the physiological and agronomical behaviour of the vine (cv. Chasselas) was conducted between 2001 and 2003 by the Swiss Federal Research Station for Plant Production at Changins (Agroscope RAC Changins) on various wine-growing farms (terroirs) in the Canton of Vaud (Switzerland), as part of a study project on Vaudois

Zoning methods in relation to the plant

The characterization of the plant is the obliged pathway between the environment and the product. The responses of the plant amplify or reduce the variations of the environment, while determining directly the type and the quality of the products. These results are inscribed inside the Viticultural Terroir Unit (VTU). VTU is the complex interaction between the Basic Terroir Unit or BTU (interaction mesoclimate x soil/subsoil), the genotype (variety x rootstock), the management system, the oenological technologies. Thus, at the most complex level, a global biological triptych is found again : environment (source) x plant (structure) = produced and exchanged substances.

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .