Terroir 2020 banner
IVES 9 IVES Conference Series 9 Have the best Bordeaux wines been drunk already? A reflection on the transient nature of terroir, using case study Australia

Have the best Bordeaux wines been drunk already? A reflection on the transient nature of terroir, using case study Australia

Abstract

Aim:  The aim of this paper is to demonstrate that the meaning of terroir should be regarded as transient. This is because climate, one of the principal components of terroir, is changing with time, and can no longer be assumed to be constant with fluctuations about a mean. This is due to the climate crisis.

Methods and Results: The paper reviewed a very recent climate modelling study of Australian grape growing regions (GI’s) especially for temperature. It included Mean Growing Season Temperatures (MSGT) for the present period (1997-2017) and two in the future, (2041-2061) and (2081-2100). The results were in line with several previous projections indicating warming and drying trends over the period. Present hot inland regions will be the most affected. Literature references indicated similar trends elsewhere in the world including traditional vineyard regions of Europe.

Conclusions: 

Results of the climate modelling for Australia and the rest of the world suggest the need for adaptive responses as the terroir changes. This will require changes to variety or of the region. The transition will be easier for presently cool regions than for presently hot ones, as more potential varieties are available. Some currently hot regions may become unsuitable for wine production. There is evidence that the optimum temperature conditions for present varieties in regions like Bordeaux have already been surpassed by climate change.

Significance and Impact of the Study: There is limited evidence to date that global wine firms recognise the scale of this problem and are planning to adapt. A good outcome would be that the world wine map might be redrawn, to feature some new regions and new varieties in existing regions. A bad outcome would be associated with failure to acknowledge or address the impending crisis.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Article

Authors

Richard Smart*

Smart Viticulture, Greenvale, Victoria, Australia

Contact the author

Keywords

Climate change, terroir, temperature

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Zoning of viticulture in Yugoslavia

The last official zoning of Viticulture in Yugoslavia was performed 1978. year, when (according to recommendation of OIV and European Economic Community), regions, sub regions and vineyards districts were established supposing that the varieties which will be exhibit ail the positive agro biological and technological characteristics.

Conversion to mechanical management in vineyards maintains fruit

Current environmental, ecological and economic issues require a better vineyard production management. In fact, a poor use of fertilizing could lead to harmful impact on environment. Another issue concerns the cultures themselves which couldn’t use fertilizers efficiently, leading to a loss of income or too much expense for farmers. Presently, estimation of fertilization’s needs is realized by the laboratory analysis of leaves selected through a random sampling. The present study aims at optimizing fertilization’s management by using a map of biophysical parameters estimated from satellite images.

The film-forming Pichia spp. in a winemaker’s toolbox: A simple isolation procedure and their performance in a mixed-culture fermentation of Vitis vinifera L. cv. Gewürztraminer must

Certain yeast species belonging to the Pichia genus are known to form a distinctive film on grape must and wine. In a mixed-culture type fermentation, Pichia spp. (P. kluyveri in particular) are known to impart beneficial oenological attributes. In this study, we report on an easy isolation method of Pichia spp. from grape must by exploiting their film-forming capacity on media containing 10% ethanol. We isolated and identified two Pichia species, namely Pichia kudriavzevii and Pichia kluyveri, and subsequently co-inoculated them with Saccharomyces cerevisiae to ferment Gewürztraminer musts. Noteworthy differences included a significant increase in the 2-phenethyl acetate levels with the P. kluyveri co-fermentation and a general increase in ethyl esters with the P. kudriavzevii co-fermentation. Both Pichia co-inoculations yielded higher levels of glycerol in the final wines. Based on all the wine parameters we tested, the P. kluyveri strain that was isolated performed similarly to a commercial P. kluyveri strain.

Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Climatic variability studies at fine scale have been developed in recent years with the reduction of material cost and the development of competitive miniaturized sensors. This work is forming part the LIFE-ADVICLIM project, of which one of the objectives is to model spatial temperature variability at vineyard scale. In the Bordeaux pilot site, a large network of data loggers has been set up to record temperature close to the vine canopy. The reduced distance between plant foliage and measurement equipment raises specific issues and leads to an increased rate of outliers compared to data retrieved from classical weather stations. Some of these were detected during data analysis, but others could not be easily identified. The present study aims to address the issue of data quality control and provide recommendations for data processing in climatic studies at fine scale.

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.