Terroir 2020 banner
IVES 9 IVES Conference Series 9 The effect of different irrigation regimes on the indigenous Cypriot grape variety Xynisteri and comparison to Sauvignon blanc

The effect of different irrigation regimes on the indigenous Cypriot grape variety Xynisteri and comparison to Sauvignon blanc

Abstract

Aims: The aims of this study were to (1) assess the response of the indigenous Cypriot variety Xynisteri to different irrigation regimes and (2) compare the performance of Xynisteri to Sauvignon Blanc grown in pots with different irrigation regimes.

Methods and Results: The investigation involved two irrigation trials conducted in Lemesos, Cyprus during the 2019 season. Irrigation trial one was established in a commercial Xynisteri vineyard. Three different irrigation regimes – full irrigation, deficit irrigation (50%) and no irrigation were used. Irrigation trial two was a potted trial of Xynisteri established from cuttings collected from two different regions (KX and ZX) and Sauvignon blanc. Three irrigation regimes – full irrigation, deficit irrigation (50%) and minimal irrigation (25%) were applied to ten treatment replicates.

Vine performance, vine phenology and bunch architecture measures were taken at five developmental growth stages during the growing season in both trials. Fruit composition analysis, yield (field trial only) and shoot, trunk and root weights measurements were performed at the end of the season.

Very few differences between measures were found between irrigation regimes in the commercial vineyard. However, in 2019 the vineyard received 194mm of rain in the growing season (April-September). Fruit composition analysis revealed fructose to be lowest in the full irrigation group compared to deficit and non-irrigated treatments.

The potted trial demonstrated that for all three irrigation regimes, both Xynisteri KX and ZX had higher stem water potential, stomatal conductance and chlorophyll content when compared to Sauvignon blanc. Additionally, Xynisteri KX had higher chlorophyll content with minimal irrigation compared to the Xynisteri ZX. 

Furthermore, Xynisteri KX and ZX produced greater end of season root, trunk and shoot weights than Sauvignon blanc under all irrigation regimes and Xynisteri KX had greater root, trunk and shoot weights than Xynisteri ZX with full irrigation

Conclusions: 

This study identified the greater potential for the indigenous Cypriot grape variety Xynisteri to cope successfully with hot and dry conditions when compared to Sauvignon blanc. It also highlights the possible existence of different biotypes that may be important for future clonal selection.

Significance and Impact of the Study: The world’s changing climate is placing great pressure on the resources for sustainable viticulture in warm/hot wine growing regions. Many vineyards and wineries base their businesses on European grape varieties traditionally grown in regions with abundant water resources. It is therefore necessary for these wine regions to investigate grape varieties that are indigenous to hot climates. The eastern Mediterranean island of Cyprus is one such place with 12 indigenous grape varieties that grow well in a hot climate without irrigation.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Alexander W. Copper1*, Christodoulos Karaolis2, Stefanos Koundouras2, Savvas Savvides3

Susan E. P. Bastian1, Trent Johnson1, Cassandra Collins1

1School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide. PMB 1, Glen Osmond, South Australia 5064, Australia
2School of Agriculture, Aristotle University, 54124, Thessaloniki, Greece
3Agricultural Research Institute, Ministry of Agriculture Rural development and Environment, P.O. Box 22016, 1516 Nicosia, Cyprus

Contact the author

Keywords

Climate change, alternative varieties, vine performance, adaptation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

α-Terpinyl ethyl ether: stereoselective GC × GC confirmation and identification of its precursors in wine

Wines exhibit profound chemical complexity which arise from a diverse array of compounds that contribute to its sensory profile.

Harnessing biodiversity to improve grapevine rootstock adaptation to drought

Drought is one of the most challenging threats for viticulture because of its impact on reducing yield and on the composition of grapes.

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

An effective method for extracting high-quality RNA from grapevine

Grapevine (Vitis vinifera L.) is one of the most important economic crops in the world. Because of this importance, one finds widespread molecular genetic research on this species, an important element of which is high quality RNA.