Terroir 2020 banner
IVES 9 IVES Conference Series 9 The effect of different irrigation regimes on the indigenous Cypriot grape variety Xynisteri and comparison to Sauvignon blanc

The effect of different irrigation regimes on the indigenous Cypriot grape variety Xynisteri and comparison to Sauvignon blanc

Abstract

Aims: The aims of this study were to (1) assess the response of the indigenous Cypriot variety Xynisteri to different irrigation regimes and (2) compare the performance of Xynisteri to Sauvignon Blanc grown in pots with different irrigation regimes.

Methods and Results: The investigation involved two irrigation trials conducted in Lemesos, Cyprus during the 2019 season. Irrigation trial one was established in a commercial Xynisteri vineyard. Three different irrigation regimes – full irrigation, deficit irrigation (50%) and no irrigation were used. Irrigation trial two was a potted trial of Xynisteri established from cuttings collected from two different regions (KX and ZX) and Sauvignon blanc. Three irrigation regimes – full irrigation, deficit irrigation (50%) and minimal irrigation (25%) were applied to ten treatment replicates.

Vine performance, vine phenology and bunch architecture measures were taken at five developmental growth stages during the growing season in both trials. Fruit composition analysis, yield (field trial only) and shoot, trunk and root weights measurements were performed at the end of the season.

Very few differences between measures were found between irrigation regimes in the commercial vineyard. However, in 2019 the vineyard received 194mm of rain in the growing season (April-September). Fruit composition analysis revealed fructose to be lowest in the full irrigation group compared to deficit and non-irrigated treatments.

The potted trial demonstrated that for all three irrigation regimes, both Xynisteri KX and ZX had higher stem water potential, stomatal conductance and chlorophyll content when compared to Sauvignon blanc. Additionally, Xynisteri KX had higher chlorophyll content with minimal irrigation compared to the Xynisteri ZX. 

Furthermore, Xynisteri KX and ZX produced greater end of season root, trunk and shoot weights than Sauvignon blanc under all irrigation regimes and Xynisteri KX had greater root, trunk and shoot weights than Xynisteri ZX with full irrigation

Conclusions: 

This study identified the greater potential for the indigenous Cypriot grape variety Xynisteri to cope successfully with hot and dry conditions when compared to Sauvignon blanc. It also highlights the possible existence of different biotypes that may be important for future clonal selection.

Significance and Impact of the Study: The world’s changing climate is placing great pressure on the resources for sustainable viticulture in warm/hot wine growing regions. Many vineyards and wineries base their businesses on European grape varieties traditionally grown in regions with abundant water resources. It is therefore necessary for these wine regions to investigate grape varieties that are indigenous to hot climates. The eastern Mediterranean island of Cyprus is one such place with 12 indigenous grape varieties that grow well in a hot climate without irrigation.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Alexander W. Copper1*, Christodoulos Karaolis2, Stefanos Koundouras2, Savvas Savvides3

Susan E. P. Bastian1, Trent Johnson1, Cassandra Collins1

1School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide. PMB 1, Glen Osmond, South Australia 5064, Australia
2School of Agriculture, Aristotle University, 54124, Thessaloniki, Greece
3Agricultural Research Institute, Ministry of Agriculture Rural development and Environment, P.O. Box 22016, 1516 Nicosia, Cyprus

Contact the author

Keywords

Climate change, alternative varieties, vine performance, adaptation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Increasing soil organic carbon (SOC) in vineyards enhances soil health with associated benefits for climate change resilience and mitigation.

Relationships between the Fregoni bioclimatic index (IF) and wine quality

The Fregoni bioclimatic index (IF) considers the daily temperature range during the ripening month and the number of days with temperature below 10°C.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.