Terroir 2020 banner
IVES 9 IVES Conference Series 9 The effect of different irrigation regimes on the indigenous Cypriot grape variety Xynisteri and comparison to Sauvignon blanc

The effect of different irrigation regimes on the indigenous Cypriot grape variety Xynisteri and comparison to Sauvignon blanc

Abstract

Aims: The aims of this study were to (1) assess the response of the indigenous Cypriot variety Xynisteri to different irrigation regimes and (2) compare the performance of Xynisteri to Sauvignon Blanc grown in pots with different irrigation regimes.

Methods and Results: The investigation involved two irrigation trials conducted in Lemesos, Cyprus during the 2019 season. Irrigation trial one was established in a commercial Xynisteri vineyard. Three different irrigation regimes – full irrigation, deficit irrigation (50%) and no irrigation were used. Irrigation trial two was a potted trial of Xynisteri established from cuttings collected from two different regions (KX and ZX) and Sauvignon blanc. Three irrigation regimes – full irrigation, deficit irrigation (50%) and minimal irrigation (25%) were applied to ten treatment replicates.

Vine performance, vine phenology and bunch architecture measures were taken at five developmental growth stages during the growing season in both trials. Fruit composition analysis, yield (field trial only) and shoot, trunk and root weights measurements were performed at the end of the season.

Very few differences between measures were found between irrigation regimes in the commercial vineyard. However, in 2019 the vineyard received 194mm of rain in the growing season (April-September). Fruit composition analysis revealed fructose to be lowest in the full irrigation group compared to deficit and non-irrigated treatments.

The potted trial demonstrated that for all three irrigation regimes, both Xynisteri KX and ZX had higher stem water potential, stomatal conductance and chlorophyll content when compared to Sauvignon blanc. Additionally, Xynisteri KX had higher chlorophyll content with minimal irrigation compared to the Xynisteri ZX. 

Furthermore, Xynisteri KX and ZX produced greater end of season root, trunk and shoot weights than Sauvignon blanc under all irrigation regimes and Xynisteri KX had greater root, trunk and shoot weights than Xynisteri ZX with full irrigation

Conclusions: 

This study identified the greater potential for the indigenous Cypriot grape variety Xynisteri to cope successfully with hot and dry conditions when compared to Sauvignon blanc. It also highlights the possible existence of different biotypes that may be important for future clonal selection.

Significance and Impact of the Study: The world’s changing climate is placing great pressure on the resources for sustainable viticulture in warm/hot wine growing regions. Many vineyards and wineries base their businesses on European grape varieties traditionally grown in regions with abundant water resources. It is therefore necessary for these wine regions to investigate grape varieties that are indigenous to hot climates. The eastern Mediterranean island of Cyprus is one such place with 12 indigenous grape varieties that grow well in a hot climate without irrigation.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Alexander W. Copper1*, Christodoulos Karaolis2, Stefanos Koundouras2, Savvas Savvides3

Susan E. P. Bastian1, Trent Johnson1, Cassandra Collins1

1School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide. PMB 1, Glen Osmond, South Australia 5064, Australia
2School of Agriculture, Aristotle University, 54124, Thessaloniki, Greece
3Agricultural Research Institute, Ministry of Agriculture Rural development and Environment, P.O. Box 22016, 1516 Nicosia, Cyprus

Contact the author

Keywords

Climate change, alternative varieties, vine performance, adaptation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Use of glutathione and a selected strain of metschnikowia pulcherrima as alternatives to sulphur dioxide to inhibit natural tyrosinase of grape must and prevent browning

The enzymatic browning of grape must is still a major problem in oenology today [1] being particularly serious when the grapes have been infected by grey rot [2]. Browning is an oxidation process that causes certain foods to turn brown, which often leads to them being rejected by consumers [3]. This is a particular problem in the case of wine, because grape must is very vulnerable to enzymatic browning [4].

Viticultural practices: past, present and future

Practices in viticulture have greatly evolved in the last five decades. There were three objectives: improvement in the quality of the products, reduction in the production costs through mechanization

Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

The measurement of carbon isotopic discrimination of musts (δ13C) at harvest is an integrated assessment of water status during ripening of grapevine. It is an alternative to traditional measurements of water status in the field, which is crucial for understanding spatial variability of plant physiology at the vineyard scale, proven useful for delineation of management zones in precision viticulture. The aim of this work was to attune the method for the first time to California conditions across a range of areas and cultivars with different hydric behavior, and to evaluate its efficiency in delineating management zones for selective harvest in commercial vineyards.

Comparative studies on the dynamics of fermentation of selected wine yeasts

Alcoholic fermentation is an anaerobic biochemical process of oxidation-reduction in which carbohydrates are metabolized by the action of yeast enzymes in major products

Evaluation of the site index model for viticultural zoning

Une variable composite, dénommée Indice de Site (SI), intégrant les propriétés physiques du sol et le mésoclimat, avait été proposée pour caractériser les terroirs dans le cadre d’une étude des vignobles de Cabernet Sauvignon de Hawke’s Bay en Nouvelle Zélande.