Terroir 2020 banner
IVES 9 IVES Conference Series 9 Terpenoid profiles and biosynthetic gene expression pattern in Asti DOCG white muscat grapes at ripening as affected by different canopy management protocols

Terpenoid profiles and biosynthetic gene expression pattern in Asti DOCG white muscat grapes at ripening as affected by different canopy management protocols

Abstract

Aim: The main goal of this study was to find an efficient canopy management to limit the high temperature-related aroma losses of White Muscat grapes, and consequently to preserve the quality standards of Asti DOCG wines.

Methods and Results: Four different strategies have been tested in two vineyards of the Asti DOCG production area: pre-flowering leaf removal (m1), post-berry set leaf removal (m2), leaf removal at veraison (m3), and clusters thinning (m4). Control vines (m0) did not receive any thinning or defoliation. Grapes were collected at four time points: seven days before the commercial harvest, at the commercial harvest scheduled for “Asti spumante” wine, at the commercial harvest scheduled for “Moscato” wine and overripening. Free and glycosylated terpenoids content (GC-MS) as well as the expression of key genes involved in terpenoids biosynthesis and metabolism (RT-qPCR) were analysed separately in skin and pulp. The results revealed a peak of volatile accumulation, which occurred early and late throughout the sampling times. The treatments m3 and m4 were, in general, those more effective in enhancing the aroma profiles in both tissues analysed. Correspondingly, in these grapes, specific genes, such as VvDXS3 and VvGT14 resulted up-regulated. Other genes, such as VvHDR, showed different expression pattern resulting, in general, more expressed in pulp than skin, regardless the applied treatment.

Conclusions:

Based on these preliminary trials carried out in a specific production area of White Muscat, it seems that m3 and m4 treatments had a significant effect on the volatile’s accumulation in both grape skin and pulp. m1 treatment resulted to be the less effective in inducing changes in the aroma profile and the terpenoid biosynthetic pathway.

Significance and Impact of the Study: Moscato d’Asti DOCG is one of the most characteristic enological products of Piemonte (North-West Italy) wine grapes-growing area. It comes exclusively from White Muscat grapes which are exalted by the climatic and geographical conditions of the production area. Indeed, the interactions between vine and environment, limestone terrain and micro-climate typical of hilly zones leads to a characteristic fruity and sweety aroma. The characteristic aroma of Muscat wine is attributed to the presence of specific terpenoids, mainly linalool, nerol, geraniol, trans-piran linalool oxide and citronellol. The grapevine terpenoids pathway is strongly regulated by endogenous and environmental factors and among them, temperature and light exposure plays a crucial role. As recently observed, the content of these compounds is strongly decreasing due to the increasing temperatures. Higher temperature during the growing season is forcing growers to find ways to reliably control grape composition preserving the typical aroma of Asti DOCG wines. The present study could offer important information to address grower’s choice in term of canopy management that are better suited to the changing climate.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Margherita Modesti1*, Ron Shmulevitz, Stefano Brizzolara1, Daniele Eberle2, Guido Bezzo2, Pietro Tonutti1

1Life Sciences Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 50127 Pisa, Italy
2Consorzio per la Tutela dell’Asti DOCG. Piazza Roma 10, 14100 Asti, Italy

Contact the author

Keywords

Canopy management, Moscato d’Asti DOCG, terpenoid content and biosynthesis, climate change

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Agronomic and qualitative behaviour of cv. Tempranillo according to three vine spacing on two different hydric-edaphic situations in the Duero river valley

The knowledge of the influence of soil conditions on the effects that different plant densities provoke in the agronomic grapevine behaviour becomes very interesting since it allows to focus the vineyard management on the optimization of the natural, hydric and human resources.

Relative impact of crop size and leaf removal on aromatic compounds and phenolic acids of Istrian Malvasia wine

Although several studies investigated the impact of crop size or fruit zone microclimate on aromatic or phenolic composition of wines, the effects of these two practices were not assessed and compared in the same study through a technological experiment within the same vineyard. Therefore, their relative effectiveness is hard to compare, which in turn is essential for providing producers with valuable information as a basis to choose adequate approach in yield and canopy management. The aim of the study was to investigate the effects of two crop sizes and two different fruit zone microclimate conditions obtained by leaf removal in a two-factorial experiment, in order to assess and compare their relative impact on Istrian Malvasia (Vitis vinifera L.) white wine aroma and phenolic composition.

Quantification of newly identified C8 aroma compounds in musts and wines as an analytical tool for the early detection of Fresh Mushroom Off-Flavor

The Fresh Mushroom Off-Flavor (FMOff) is a concerning undesirable aroma in wine specific of certain vintages, characterized by a typical button mushroom aroma. The appearance of this off-flavor is linked to the presence of certain fungus on the grape [1-3].

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).

Evaluating analytical methods for quantification of glutathione in grape juice and wine

AIM: Glutathione (GSH) is a powerful natural antioxidant, considered as a promising molecule against oxidative damage of aroma during winemaking and storage.