Terroir 2020 banner
IVES 9 IVES Conference Series 9 Terpenoid profiles and biosynthetic gene expression pattern in Asti DOCG white muscat grapes at ripening as affected by different canopy management protocols

Terpenoid profiles and biosynthetic gene expression pattern in Asti DOCG white muscat grapes at ripening as affected by different canopy management protocols

Abstract

Aim: The main goal of this study was to find an efficient canopy management to limit the high temperature-related aroma losses of White Muscat grapes, and consequently to preserve the quality standards of Asti DOCG wines.

Methods and Results: Four different strategies have been tested in two vineyards of the Asti DOCG production area: pre-flowering leaf removal (m1), post-berry set leaf removal (m2), leaf removal at veraison (m3), and clusters thinning (m4). Control vines (m0) did not receive any thinning or defoliation. Grapes were collected at four time points: seven days before the commercial harvest, at the commercial harvest scheduled for “Asti spumante” wine, at the commercial harvest scheduled for “Moscato” wine and overripening. Free and glycosylated terpenoids content (GC-MS) as well as the expression of key genes involved in terpenoids biosynthesis and metabolism (RT-qPCR) were analysed separately in skin and pulp. The results revealed a peak of volatile accumulation, which occurred early and late throughout the sampling times. The treatments m3 and m4 were, in general, those more effective in enhancing the aroma profiles in both tissues analysed. Correspondingly, in these grapes, specific genes, such as VvDXS3 and VvGT14 resulted up-regulated. Other genes, such as VvHDR, showed different expression pattern resulting, in general, more expressed in pulp than skin, regardless the applied treatment.

Conclusions:

Based on these preliminary trials carried out in a specific production area of White Muscat, it seems that m3 and m4 treatments had a significant effect on the volatile’s accumulation in both grape skin and pulp. m1 treatment resulted to be the less effective in inducing changes in the aroma profile and the terpenoid biosynthetic pathway.

Significance and Impact of the Study: Moscato d’Asti DOCG is one of the most characteristic enological products of Piemonte (North-West Italy) wine grapes-growing area. It comes exclusively from White Muscat grapes which are exalted by the climatic and geographical conditions of the production area. Indeed, the interactions between vine and environment, limestone terrain and micro-climate typical of hilly zones leads to a characteristic fruity and sweety aroma. The characteristic aroma of Muscat wine is attributed to the presence of specific terpenoids, mainly linalool, nerol, geraniol, trans-piran linalool oxide and citronellol. The grapevine terpenoids pathway is strongly regulated by endogenous and environmental factors and among them, temperature and light exposure plays a crucial role. As recently observed, the content of these compounds is strongly decreasing due to the increasing temperatures. Higher temperature during the growing season is forcing growers to find ways to reliably control grape composition preserving the typical aroma of Asti DOCG wines. The present study could offer important information to address grower’s choice in term of canopy management that are better suited to the changing climate.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Margherita Modesti1*, Ron Shmulevitz, Stefano Brizzolara1, Daniele Eberle2, Guido Bezzo2, Pietro Tonutti1

1Life Sciences Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 50127 Pisa, Italy
2Consorzio per la Tutela dell’Asti DOCG. Piazza Roma 10, 14100 Asti, Italy

Contact the author

Keywords

Canopy management, Moscato d’Asti DOCG, terpenoid content and biosynthesis, climate change

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Biophysical and agronomical drivers of the distribution of Plasmopara viticola oospores in vineyard soils

Grapevine downy mildew (GDM), caused by the obligate biotroph oomycete Plasmopara viticola, is one of the most destructive diseases in viticulture.

Benefits and risks of the utilization of grape pomace as organic fertilizers

Rhineland-Palatinate is Germany’s largest wine growing region. The recently launched collaborative project in the frame of the ‘Carl-Zeiss-Stiftungs-Kooperationsfonds für Nachhaltigkeitsforschung’ focusses on the risk-benefit assessment of the use of grape pomace (GP) from the region ‘Pfalz’ in Rhineland-Palatinate as a natural fertilizer

Identification and biological properties of new resveratrol derivatives formed in red wine

Resveratrol is a well-known wine constituent with a wide range of activities. In wines, resveratrol can be oxidized to form various derivatives including oligomers [1]. In this study, resveratrol derivative transformation in hydroalcoholic solution was investigated by oxidative coupling using metals. De novo resveratrol derivatives were synthetized and analysed by NMR and MS experiments

Agroclimatic characterisation of the Portugese wine denominations of origin using a compound index

Aims: This study aims to: (1) characterize the agroclimatic conditions of the Portuguese Denominations of Origin, using a compound index that combines thermal and soil water balance conditions and a high-resolution climatic dataset (~1 km spatial resolution); (2) categorize the main grapevine varieties as a function of this compound index.

Influence of the type of tanks employed for winemaking on red wine phenolic composition

The grape maturation process is being affected by the consequences of global climate change and, as a result, there is a gap at harvest time between the technological maturity of grapes (mostly the concentration of sugar and acids) and its phenolic quality. Due to this gap, the wines elaborated using those grapes show a non-adequate phenolic composition, which results in defects on its color and astringency characteristics. Astringency is mainly related to the salivary protein precipitation because of the interaction not only with wine flavanols but also with other wine phenolics, such as flavonols or different pigments.