Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regional impact on rootstock/scion mediated methoxypyrazine accumulation in rachis

Regional impact on rootstock/scion mediated methoxypyrazine accumulation in rachis

Abstract

Aim: To investigate the impact of Geographical Indications (GI) of South Australia on the rootstock/scion-mediated methoxypyrazine accumulation within the rachis of Shiraz and Cabernet Sauvignon. 

Methods and Results: Cabernet Sauvignon and Shiraz bunches were sampled at maturity from two South Australian GIs over the 2019 and 2020 harvest periods. From each region, a minimum of 18 bunches per rootstock/scion combination were sampled from across the vineyard and their rachis material was assessed for 3-isobutyl-2-methoxypyrazine (IBMP). Results indicated that region and rootstock choice significantly affect the concentrations of methoxypyrazines within the rachis material of both Shiraz and Cabernet Sauvignon varieties at harvest. 

Conclusion: 

This research highlights the effect of regionality on the concentration of methoxypyrazines within the rachis material of Cabernet and Shiraz vines grown on common rootstock varieties. The outcomes will conceivably inform viticulturalists and winemakers of how methoxypyrazine characteristics of Shiraz and Cabernet Sauvignon rachis are impacted by common rootstock/scion combinations permitting informed rootstock selection and assisting in production of a target wine style.

Significance and Impact of the Study: The presence of rachis material during red must fermentation can confer methoxypyrazines to the wine. The presence of methoxypyrazines, and predominately 3-isobutyl-2-methoxypyrazine (IBMP), in red wine can impact the flavour and aroma profile due to their ‘green’ and ‘earthy’ characteristics. Interestingly, this phenomenon has been shown to impact the aroma profile of Shiraz wines, a variety that has not been shown to naturally produce methoxypyrazines within the berries. Furthermore, it appears that the concentration of methoxypyrazines within the rachis is mediated by rootstock/scion combination and the region in which the vines are grown. As rootstock uptake increases across Australia in response to biological threats and abiotic stresses, an understanding of the viticultural and regional influences on rootstock/scion mediated rachis composition is essential to facilitate the production of high-quality Australian wines under increasingly challenging conditions.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Ross D. Sanders1,2,3, Paul K. Boss1,3, Dimitra L. Capone1,2, Catherine Kidman4, David W. Jeffery1,2*

1Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, PMB1 Glen Osmond, SA, 5064, Australia
2School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA, 5064, Australia
3CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA 5064, Australia
4Wynns Coonawarra Estate, 77 Memorial Drive, Coonawarra, SA 5263, Australia

Contact the author

Keywords

Shiraz, Cabernet Sauvignon, Vitis vinifera, wine aroma

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Les micro-zones et les technologies traditionnelles de la viniculture en Géorgie

La Géorgie est un pays d’une tradition très ancienne de viticulture et de viniculture. Là, dans les micro zones spécifiques, en précisant le lieu on produit de différents types du vin d’une

Photo-oxidative stress and light-struck defect in Corvina rosé wines: influence of yeast nutritional strategies

Light exposure is one of the major factors affecting the sensory quality of rosé wines and resulting in the light-struck fault.

Temperature effects on the biosynthesis of aroma compounds in glera grapes

This paper describes the first year results of a study that investigated the effects of altitude and related temperature parameters on the biosynthesis of aromas in the Italian cultivar Glera.

Viticultural landscape: history of a challenging coexistence between grapevines and humans 

Vitis vinifera is the most grown grapevine species, which originated about 6 million years ago in the trans-caucasian area as the ancestral (wild) type v. Vinifera spp. Sylvestris. On the other hand, the human being (homo sapiens) is much younger since he originated about 300.000 years ago in north africa.

The real sour grapes: genetic Loci, genes, and metabolic changes associated with grape malate levels

Insufficient levels of malate and lack of acidity in commercial grape cultivars (V.vinifera) hinders the quality of fruit grown in warm climates. Conversely, excessive levels of malate and sourness in wild Vitis grape, leads to unpalatable fruit and complicates the introgression of valuable disease resistant alleles through breeding. Nonetheless, albeit decades of research, knowledge regarding the molecular regulation of malate levels in grape remains limited.