Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regional impact on rootstock/scion mediated methoxypyrazine accumulation in rachis

Regional impact on rootstock/scion mediated methoxypyrazine accumulation in rachis

Abstract

Aim: To investigate the impact of Geographical Indications (GI) of South Australia on the rootstock/scion-mediated methoxypyrazine accumulation within the rachis of Shiraz and Cabernet Sauvignon. 

Methods and Results: Cabernet Sauvignon and Shiraz bunches were sampled at maturity from two South Australian GIs over the 2019 and 2020 harvest periods. From each region, a minimum of 18 bunches per rootstock/scion combination were sampled from across the vineyard and their rachis material was assessed for 3-isobutyl-2-methoxypyrazine (IBMP). Results indicated that region and rootstock choice significantly affect the concentrations of methoxypyrazines within the rachis material of both Shiraz and Cabernet Sauvignon varieties at harvest. 

Conclusion: 

This research highlights the effect of regionality on the concentration of methoxypyrazines within the rachis material of Cabernet and Shiraz vines grown on common rootstock varieties. The outcomes will conceivably inform viticulturalists and winemakers of how methoxypyrazine characteristics of Shiraz and Cabernet Sauvignon rachis are impacted by common rootstock/scion combinations permitting informed rootstock selection and assisting in production of a target wine style.

Significance and Impact of the Study: The presence of rachis material during red must fermentation can confer methoxypyrazines to the wine. The presence of methoxypyrazines, and predominately 3-isobutyl-2-methoxypyrazine (IBMP), in red wine can impact the flavour and aroma profile due to their ‘green’ and ‘earthy’ characteristics. Interestingly, this phenomenon has been shown to impact the aroma profile of Shiraz wines, a variety that has not been shown to naturally produce methoxypyrazines within the berries. Furthermore, it appears that the concentration of methoxypyrazines within the rachis is mediated by rootstock/scion combination and the region in which the vines are grown. As rootstock uptake increases across Australia in response to biological threats and abiotic stresses, an understanding of the viticultural and regional influences on rootstock/scion mediated rachis composition is essential to facilitate the production of high-quality Australian wines under increasingly challenging conditions.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Ross D. Sanders1,2,3, Paul K. Boss1,3, Dimitra L. Capone1,2, Catherine Kidman4, David W. Jeffery1,2*

1Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, PMB1 Glen Osmond, SA, 5064, Australia
2School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA, 5064, Australia
3CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA 5064, Australia
4Wynns Coonawarra Estate, 77 Memorial Drive, Coonawarra, SA 5263, Australia

Contact the author

Keywords

Shiraz, Cabernet Sauvignon, Vitis vinifera, wine aroma

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Regulation of terpene production in methyl jasmonate treated cell-cultures

Terpenes are responsible for flavors and aromas of grapes, however, they also protect from radiation, participate in biotic stress and antioxidant mechanisms. The phytohormone methyl jasmonate (MeJA) mediates many of these stress responses and has been associated with increased terpene content in berries. Here, we generated transcriptomic data of Vitis vinifera cv. ‘Gamay’ cells treated with MeJA (100 μM) and cyclodextrins (50 μM) to understand these responses. Ontology analysis revealed that up-regulated genes (URGs) were enriched in jasmonic acid biosynthesis and signaling terms, as expected. Inspection of transcription factors (TFs) among URGs allowed us to study uncharacterized TFs.

Valorization of grape marc in a biorefinery loop for producing short- and medium-chain fatty acids, hydrogen, and methane, with polyphenol recovery

Global grape production amounts to approximately 70 million tons per year, with Europe contributing 61% of the world’s wine output, primarily from Italy, France, and Spain.

Evaluation of field inoculation of Kocuria rhizophila and Streptomyces violaceoruber as biostimulants under water availability conditions in grapevines

Agricultural productivity must promote management systems that incorporate sustainability principles, and viticulture is no exception.

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].