Terroir 2020 banner
IVES 9 IVES Conference Series 9 The influence of site aspect and pruning types on Pinot Noir phenology and shoot growth

The influence of site aspect and pruning types on Pinot Noir phenology and shoot growth

Abstract

Aim: Managing the influence that terroir in vineyards has on vine development depends on improving our understanding the effect of the interaction of within-site variability, within-vine variability, and management practices (such as pruning types) on phenology and vine development. This study evaluates the consequence of site aspect and pruning management on budburst, leaf appearance rate, and shoot growth in Pinot noir vines.

Methods and Results: Two rows of 19-year-old Pinot noir vines were selected within a commercial vineyard with south, hilltop, and north-facing aspects (note: the north-facing slope is sun-facing in the Southern Hemisphere). Vines were either cane- or spur-pruned, retaining 20 nodes per vine. Budburst, shoot development, and leaf appearance were assessed, and vine trunk circumference was measured to quantify the accumulated differences in vine vigour.

Hilltop plots had smaller trunk circumferences when compared to the south- and north-facing plots. Irrespective of topographical positions, budburst was earlier in cane-pruned vines compared to spur-pruned vines, but no differences were observed by the time of 12-leaf stage. The rate of shoot growth reflected the variations in topographical positions and trunk circumference. Cane-pruning exhibited more significant within-vine variation in budburst, budburst duration, and shoot growth when compared with spur-pruning. Shoots from hilltop vines were shorter relative to the vines at other plots for both pruning systems.

Conclusions:

The rate of shoot growth and development was associated more with site and vine vigour as determined by trunk circumference than pruning type. Spur-pruned vines had a later but more uniform budburst when compared to cane-pruned vines.

Significance and Impact of the Study: Pruning type and within-site variability may lead to differences in canopy density and vine vigour, which can ultimately impact subsequent growth and development of the grapevine. Determining the influence of terroir within the vineyard on budburst, leaf appearance, and shoot growth variability will enable the development of improved phenology and growth models to describe within vineyard variability.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Chinna Ghouse Peera Shaikh Kulsum1*, Michael Trought1, Hervé Quénol3, Andrew Sturman2, Don Kulasiri1, Amber Parker1

1Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
3 CNRS, UMR 6554 LETG, Université Rennes 2, Place du Recteur Henri Le Moal, 35043, Rennes, France

Contact the author

Keywords

Terroir, pruning system, within-vine variability, vine vigour, shoot growth and development, Pinot noir

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Riqualificazione dell’antica “Terra di Lavoro” attraverso il rilancio della cultivar Abbuoto

L’agricoltura dei territori costituenti l’antica “Terra di Lavoro”, territorio che oggi è compreso nella provincia di Caserta ed in parte di quelle di Frosinone e Latina, ha subito a partire dal 1970

Regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area. The potential for innovation lies in developing and combining new approaches that make agriculture more environmentally sustainable and enable a circular economy capable of improving farmers’ incomes. Primarily REVINE aims to improve soil health and biodiversity by promoting the multiplication of soil saprophytic microorganisms and the presence of useful microorganisms linked to the life cycle of the plant, such as rhizobacteria (PGPR) and fungi (PGPF) that promote plant growth which, in addition to increasing plant performance, increase tolerance to biotic and abiotic stresses.

Application of non-Saccharomyces yeasts in peculiar winemaking, sparkling and sweet wines: biological acidification, prise de mousse, aroma profile. Two cases of study

In this video recording of the IVES science meeting 2025, Raffaele Guzzon (Fondazione Edmund Mach, Centro di Trasferimento Tecnologico, San Michele all’Adige (TN), Italy) speaks about the application of non-Saccharomyces yeasts in peculiar winemaking, sparkling and sweet wines (biological acidification, prise de mousse, aroma profile). This presentation is based on an original article accessible for free on OENO One.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.