Terroir 2020 banner
IVES 9 IVES Conference Series 9 The influence of site aspect and pruning types on Pinot Noir phenology and shoot growth

The influence of site aspect and pruning types on Pinot Noir phenology and shoot growth

Abstract

Aim: Managing the influence that terroir in vineyards has on vine development depends on improving our understanding the effect of the interaction of within-site variability, within-vine variability, and management practices (such as pruning types) on phenology and vine development. This study evaluates the consequence of site aspect and pruning management on budburst, leaf appearance rate, and shoot growth in Pinot noir vines.

Methods and Results: Two rows of 19-year-old Pinot noir vines were selected within a commercial vineyard with south, hilltop, and north-facing aspects (note: the north-facing slope is sun-facing in the Southern Hemisphere). Vines were either cane- or spur-pruned, retaining 20 nodes per vine. Budburst, shoot development, and leaf appearance were assessed, and vine trunk circumference was measured to quantify the accumulated differences in vine vigour.

Hilltop plots had smaller trunk circumferences when compared to the south- and north-facing plots. Irrespective of topographical positions, budburst was earlier in cane-pruned vines compared to spur-pruned vines, but no differences were observed by the time of 12-leaf stage. The rate of shoot growth reflected the variations in topographical positions and trunk circumference. Cane-pruning exhibited more significant within-vine variation in budburst, budburst duration, and shoot growth when compared with spur-pruning. Shoots from hilltop vines were shorter relative to the vines at other plots for both pruning systems.

Conclusions:

The rate of shoot growth and development was associated more with site and vine vigour as determined by trunk circumference than pruning type. Spur-pruned vines had a later but more uniform budburst when compared to cane-pruned vines.

Significance and Impact of the Study: Pruning type and within-site variability may lead to differences in canopy density and vine vigour, which can ultimately impact subsequent growth and development of the grapevine. Determining the influence of terroir within the vineyard on budburst, leaf appearance, and shoot growth variability will enable the development of improved phenology and growth models to describe within vineyard variability.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Chinna Ghouse Peera Shaikh Kulsum1*, Michael Trought1, Hervé Quénol3, Andrew Sturman2, Don Kulasiri1, Amber Parker1

1Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
3 CNRS, UMR 6554 LETG, Université Rennes 2, Place du Recteur Henri Le Moal, 35043, Rennes, France

Contact the author

Keywords

Terroir, pruning system, within-vine variability, vine vigour, shoot growth and development, Pinot noir

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation.

Applying artificial intelligence for improving grape yield estimation: A case study of wine and table grapes in South Africa

Accurate grape yield estimation is essential for effective vineyard management, crop planning, and resource allocation. Traditional methods often involve time-consuming and labour-intensive processes, which may introduce errors due to the large size and inherent spatial variability of the vineyard blocks.

Exploring the potential of Hanseniaspora vineae for quality wines production

Traditionally, non-saccharomyces yeasts were deemed undesirable in winemaking, for this reason, it is a common practice to add sulphites to prevent their proliferation during the initial stages of vinification. However, the current research on yeast diversity has unveiled numerous non-saccharomyces strains possessing advantageous traits that enrich the sensory profile of wines. The genus hanseniaspora is often associated with wine fermentation and is also commonly found on grapes.

Electrochemical diversity of italian white wines

Analysis of phenolic compounds typically involve spectrophotometric methods as well as liquid chromatography combined with DAD, fluorimetric, or MS detection. However, the complexity of wine phenolic composition generated, in recent years, attention towards other analytical approaches, including those allowing rapid and inexpensive operations. Voltametric AIM Oxidation of white wine phenolics occurs at different stages during winemaking and storage and can have important implications for wine sensory quality. Phenolic compounds, in particular those with a ortho-diphenol moiety, are main target of oxidation in wine. Strategies for the methods are particularly suited for the analysis of oxidizable compounds such as phenolics. The redox-active species can be oxidized and reduced at the electrode, therefore, applications of electrochemistry have been developed both to quantify such species, and to probe wine maturation processes.3 The project on the diversity of Italian wines aims at collecting and analysing large-scale compositional dataset related to Italian white wines.