Zoning influence in chromatic parameters in Monastrell grape

Abstract

Zoning analysis determine homogeneous areas principally from the point of view of the medium, giving as a result a map which cartographic units synthesize the relations between the edaphic factors; morphological factors of the soil and climatic factors. The combination of these types of parameters allows to obtain maps of suitability of the optimum areas for the crop of the vineyard. At present it has been delimited and characterized eight grape areas belonging to the D.O. Jumilla. The chosen plots has been: Varahonda, Cañada del Judío, Cañada de Albatana, El Carche, Rubializas, Agüeros, Cortijo del Agrio and Casa Vistalegre. 
The determined parameters are: Phenological parameters: Dates of sprouting, flowering, veraison, and harvest. Chemical parameters during maturation: total phenolic compounds, anthocyanins to pH 1 (extractable anthoc.) and anthocyanins to pH 3 (Total anthoc.), seed ripeness (MP) and index of cellular ripeness (IMC). 
As for the determination of chromatic parameters and of extractability, in the plot of Cortijo del agrio the biggest quantity of anthocyanins has been obtained on having finished the period of ripening, on the other hand the plot of Cañada del Judio is the one that has obtained the highest values of extractable polyphenols. In our study, for the IMC lower value has been obtained for the plot located in Cañada del Judio and the highest value for the plot of Cortijo del agrio. As for seed ripeness Rubializas and Cortijo del agrio are the plots that obtained the lowest values. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Rosario VILA LÓPEZ, Pascual ROMERO AZORÍN, José Ignacio FERNÁNDEZ FERNÁNDEZ, Adrián MARTÍNEZ CUTILLAS, Rocío Gil MUÑOZ

Viticultura Department, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), c/Mayor, s/n, 31050, La Alberca, Spain

Contact the author

Keywords

zoning, monastrell, chromatic parameters 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Key phenolic compounds in the pulp of new red-fleshed table grape hybrids: anthocyanins and flavonols 

The cultivated area of table grapes worldwide has experienced a paramount increase over the last two decades. In this current scenario, traditional varieties are being replaced by new cultivars that prioritize a profitable and sustainable agriculture, while satisfying consumer demands. It is widely recognized that wine varieties, especially those with red berry flesh, are renowned for their high antioxidant capacity and phenolic compounds, which promote health. Recently, this topic has also gained significance in table grape breeding programs.

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

Effects of oak barrel aging monitored by 1H-NMR metabolomics

The study of wine evolution during barrel aging is an important aspect of wine quality. Our previous works have shown that wine metabolome monitoring by

1H-NMR approaches allows determining the impact of different winemaking processes including traitements using enzymes or finning agents [1].

What is the best soil for Sangiovese quality wine?

Sangiovese is one of the main cultivar in the Italian ampelographic outline and it occupies more than 60% of total vineyard surface in the Tuscany region. It is also well known that the environmental

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).