Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Copper reduction strategy for sangiovese in organic viticulture

Copper reduction strategy for sangiovese in organic viticulture

Abstract

Organic viticulture requires copper based treatments for bunch protection even though an intensive employment is no longer admitted because of its low leaching and phytotoxicity in the soil. UE Reg. 1981/2018 set copper employment to 4 kg/ha for year or 28 during 7 years with an absolute level allowed of 6 Kg/ha although those limits were decreased frequently. In order to reduce copper a valid strategy is to monitor vineyard microclimate (wind, temperature, humidity) implementing DSS to maximize treatments effectiveness. We can also stimulate plant natural defenses by supporting substances (Biostimulants, Inductors, Revitalizing molecules) in order to minimize number of treatments. In the Castello of Gabbiano farm (DOCG Chianti Classico, Italy) during 2019 and 2020, an organic management has been compared with the same organic management but with reduced treatments and adding supporting substances to the grapevine, over 3 vineyards with different exposition and slope. No statistical significance (P>0,05) has been found between the two managements inside each vineyard regarding grapes production and quality. Downy mildew Incidence and severity on leaf and bunch were higher in the low copper employment management only in 2020. Data of copper treatments allowed a calculation of 2.7 kg/ha and 4.3 copper employment for organic and low treatments organic management respectively over the two years, producing grapevine with the same quality but with a copper distribution reduction of 37-40% over different exposition and cultivation situations.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Petrucci William Antonio1, Ciofini Alice1, Valentini Paolo1, D’Arcangelo Mauro E. M. 1, Storchi Paolo1, Mugnai Laura2, Carella Giuseppe2, Burroni Fabio3, Marco Pierucci4, Perria Rita1

1 CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria – Centro di ricerca Viticoltura ed Enologia
2 DAGRI – Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali-Università di Agraria di Firenze
Castello di Gabbiano
P.Ri.Ma. Forma – Progettazione, Ricerca e Management per la Formazione

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Fermentation Products, Degradation Parameters, (Poly)Phenols And Potassium Content In Tokaji Aszú Winemaking

The historic Tokaj Wine Region in northeast Hungary, a UNESCO World Heritage region since 2002, encompasses 5,500 ha vineyards. Produced from “noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil conditions (clay, loess on volcanic bedrock) and grape

Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatil phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons,

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).

The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

Nitrogen fertilization is an important practice to guarantee vineyards sustainability and performance over years, while ensuring berry quality. However, achieving a precise nitrogen fertilization to meet specific objectives of production is difficult. There is a lack of knowledge on the impact of nitrogen fertilizers (soil/foliar; organic/mineral) and different levels of fertilization on the interactions between carbon and nitrogen cycles within the vine. Crop models may be useful in that purpose because they can provide new insights of the effects of fertilization in carbon and nitrogen storage. The objective of this study is to build a model to simulate grapevine carbon and nitrogen content in vines to evaluate the impact of different fertilization strategies in vine growth and yield.

Comparison between satellite and ground data with UAV-based information to analyse vineyard spatio-temporal variability

Currently, the greatest challenge for vine growers is to improve the yield and quality of grapes by minimizing costs and environmental impacts. This goal can be achieved through a better knowledge of vineyard spatial variability. Traditional platforms such as airborne, satellite and unmanned aerial vehicles (UAVs) solutions are useful investigation tools for vineyard site specific management.