Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Copper reduction strategy for sangiovese in organic viticulture

Copper reduction strategy for sangiovese in organic viticulture

Abstract

Organic viticulture requires copper based treatments for bunch protection even though an intensive employment is no longer admitted because of its low leaching and phytotoxicity in the soil. UE Reg. 1981/2018 set copper employment to 4 kg/ha for year or 28 during 7 years with an absolute level allowed of 6 Kg/ha although those limits were decreased frequently. In order to reduce copper a valid strategy is to monitor vineyard microclimate (wind, temperature, humidity) implementing DSS to maximize treatments effectiveness. We can also stimulate plant natural defenses by supporting substances (Biostimulants, Inductors, Revitalizing molecules) in order to minimize number of treatments. In the Castello of Gabbiano farm (DOCG Chianti Classico, Italy) during 2019 and 2020, an organic management has been compared with the same organic management but with reduced treatments and adding supporting substances to the grapevine, over 3 vineyards with different exposition and slope. No statistical significance (P>0,05) has been found between the two managements inside each vineyard regarding grapes production and quality. Downy mildew Incidence and severity on leaf and bunch were higher in the low copper employment management only in 2020. Data of copper treatments allowed a calculation of 2.7 kg/ha and 4.3 copper employment for organic and low treatments organic management respectively over the two years, producing grapevine with the same quality but with a copper distribution reduction of 37-40% over different exposition and cultivation situations.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Petrucci William Antonio1, Ciofini Alice1, Valentini Paolo1, D’Arcangelo Mauro E. M. 1, Storchi Paolo1, Mugnai Laura2, Carella Giuseppe2, Burroni Fabio3, Marco Pierucci4, Perria Rita1

1 CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria – Centro di ricerca Viticoltura ed Enologia
2 DAGRI – Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali-Università di Agraria di Firenze
Castello di Gabbiano
P.Ri.Ma. Forma – Progettazione, Ricerca e Management per la Formazione

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Raffinose: a sweet solution for grapevine drought tolerance

Water tolerance in plants is often associated with the accumulation of osmotic protectants, which are secondary metabolites that can help the plant to cope with water stress. One of the key osmotic protectants is a sugar called Raffinose, which is synthesized by a family of enzymes called Raffinose synthases. In this work, we focused on one of these enzymes, VviRAF2, which is a gene that shows different expression levels and genetic variants (SNPs) among different grapevine cultivars, ranging from tolerant to susceptible to water stress, and the transcription factors that may regulate the expression of this gene family.

L’effetto paesaggio sul sistema delle preferenze: i vini veneti tra evocazioni di consumo e determinanti di scelta

La presente relazione mira ad individuare il ruolo del paesaggio nella determinazione delle preferenze della domanda, in modo da far emergere i fattori immateriali che definiscono il valore territoriale dei vini tipici su cui far leva per le strategie di marketing. L’analisi ha riguardato vini tipici del Veneto e coinvolto soggetti non provenienti da questa Regione. Ne è emerso l’effetto amplificativo dell’immagine del paesaggio sulla qualità percepita.

The effects of soil health management practices on soil organic carbon persistence and accrual in vineyards

Context and purpose of the study. Climate change is already threatening California vineyards, as they grapple with increasing extreme weather events and drier growing seasons.

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system. Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality.