Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Copper reduction strategy for sangiovese in organic viticulture

Copper reduction strategy for sangiovese in organic viticulture

Abstract

Organic viticulture requires copper based treatments for bunch protection even though an intensive employment is no longer admitted because of its low leaching and phytotoxicity in the soil. UE Reg. 1981/2018 set copper employment to 4 kg/ha for year or 28 during 7 years with an absolute level allowed of 6 Kg/ha although those limits were decreased frequently. In order to reduce copper a valid strategy is to monitor vineyard microclimate (wind, temperature, humidity) implementing DSS to maximize treatments effectiveness. We can also stimulate plant natural defenses by supporting substances (Biostimulants, Inductors, Revitalizing molecules) in order to minimize number of treatments. In the Castello of Gabbiano farm (DOCG Chianti Classico, Italy) during 2019 and 2020, an organic management has been compared with the same organic management but with reduced treatments and adding supporting substances to the grapevine, over 3 vineyards with different exposition and slope. No statistical significance (P>0,05) has been found between the two managements inside each vineyard regarding grapes production and quality. Downy mildew Incidence and severity on leaf and bunch were higher in the low copper employment management only in 2020. Data of copper treatments allowed a calculation of 2.7 kg/ha and 4.3 copper employment for organic and low treatments organic management respectively over the two years, producing grapevine with the same quality but with a copper distribution reduction of 37-40% over different exposition and cultivation situations.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Petrucci William Antonio1, Ciofini Alice1, Valentini Paolo1, D’Arcangelo Mauro E. M. 1, Storchi Paolo1, Mugnai Laura2, Carella Giuseppe2, Burroni Fabio3, Marco Pierucci4, Perria Rita1

1 CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria – Centro di ricerca Viticoltura ed Enologia
2 DAGRI – Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali-Università di Agraria di Firenze
Castello di Gabbiano
P.Ri.Ma. Forma – Progettazione, Ricerca e Management per la Formazione

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Contribution du potentiel glycosidique à l’arôme des vins de Grenache noir et Syrah en Vallée du Rhône

Grenache Noir and Syrah are the predominant grape varieties in the French Rhone valley vineyard, and produce wines with well differentiated aromatic notes. This study aimed at investigating the contribution of glycoconjugated precursors to these aromatic specificities, through their analytical profiles and the sensory influence of the odorant compounds they release during wine aging. The aglycones released by enzymatic hydrolysis of glycosidic extracts

Hormonal and associated metabolic changes in susceptible harvest-ripe grapes under asymptomatic and symptomatic Esca disease

Esca complex is a disease affecting grapevine trunks, characterized by the colonization of the wood by xylem-residing fungi (Phaeomoniella chlamydospora, Phaeoacremonium minimum and Fomitiporia mediterranea), and posing significant risks to vineyard longevity since no efficient treatment is available. Despite its prevalence, the mechanisms beyond symptomatic manifestations like interveinal chlorosis and leaf necrosis remain unclear. Preliminary findings indicated a more pronounced metabolic reprogramming in fruits compared to vegetative organs and a putative impact on wine quality by using fruits from symptomatic grapevines.

Kinetic study of browning caused by laccase activity using different substrates

To our knowledge all the studies about laccase kinetics and its inhibition have been performed with substrates and conditions very different from those of real grape juice. Moreover, none of these researches really measure enzymatic browning, since they have not taken into account what happens after the oxidation of o-diphenols in o-diquinones and their subsequent polymerization to form melanins1. For that reason, the aim of this research was to develop a new model to measure the kinetics of browning caused by Botrytis cinerea laccase under conditions much closer to those of grape juice and using the substrates naturally present in it.

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components.
Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique
sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.