Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Dual mode of action of grape cane extracts against Botrytis cinerea

Dual mode of action of grape cane extracts against Botrytis cinerea

Abstract

Crude extracts of Vitis vinifera canes represent a natural source of stilbene compounds with well characterized antifungals properties. In our trials, exogenous application of a stilbene extract (SE) obtained from grape canes on grapevine leaves reduces the necrotic lesions caused by Botrytis cinerea. The SE showed to possess a direct antifungal activity by inhibiting the mycelium growth. The activation of some grapevine defense mechanism was also investigated. H2O2 production and activation of mitogen-activated protein kinase (MAPK) phosphorylation cascades as well as accumulation of stilbenoid phytoalexins were explored on grapevine cell suspension. Moreover, the transcription of genes encoding for proteins affecting defense responses was analyzed on grapevine plants. The SE induced some grapevine defense mechanisms including MAPK activation, and the expression of pathogenesis-related (PR) genes and of a gene encoding the glutathione-S-transferase 1 (GST1). By contrast, treatment of grapevine leaves with SE negatively regulates de novo stilbene production.

References

Section for all references

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Gicele Sbardelotto De Bona1,2*, Marielle Adrian4, Jonathan Negrel4, Annick Chiltz4, Agnès Klinguer4, Benoît Poinssot4, Marie-Claire Héloir4, Elisa Angelini3, Simone Vincenzi1,2*, Nadia Bertazzon3

1Università di Padova, Dipartimento Territorio e Sistemi Agro-Forestali (TESAF), Viale dell’Università, 16, 35020 Legnaro (PD), Italia
2 Università di Padova, Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Viale dell’Università, 16, 35020 Legnaro (PD), Italia
3Centro di Ricerca Viticoltura ed Enologia (CREA), Via XXVIII Aprile 26, 31015 Conegliano, TV, Italia
4Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Franche- Comte, F-21000, Dijon, Francia

Contact the author

Keywords

cane extract, resveratrol, stilbenes, phytoalexin, Botrytis cinerea, grapevine, defense response

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Characterization of vineyard sites for quality wine production. German experiences

The quality of grapevines measured by yield and must density in the northern part of Europe conditons can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another. One hundred year observations in Johannisberg from 1890 to 1991 demonstrate for the yield formation a clear dependancy from the year combined with a steady increase in productivity; latter a proof of positive clonal selection efforts.

Intra-varietal diversity in cv. ‘Tempranillo Tinto’: phenological stages

‘Tempranillo Tinto’ is one of the most relevant grapevine cultivars worldwide. Despite its early ripening and relatively short vegetative cycle, which may not be ideal for high-quality grape and wine production in warming conditions, its long-standing cultivation has led to an intense multiplication by cuttings, which originated the high level of clonal variation currently available. Now, this intra-varietal diversity provides an interesting opportunity for cultivar improvement by identifying genotypes with better adaptation potential.

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

The rootstock, the neglected player in the scion transpiration even during the night

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.