Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 PulvéLab: an experimental vineyard for innovation in precision spraying

PulvéLab: an experimental vineyard for innovation in precision spraying

Abstract

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies is paving the way for the development and diffusion of innovative digital solutions for precision spraying in vineyards. The PulvéLab is a new project launched in 2018 by the research joint unit team ECOTECH (IFV-IRSTEA). This project aims to accelerate innovation in precision viticulture by offering public and private partners a dedicated vineyard estate of 10ha (Hérault, France) to (i) test, (ii) evaluate and (iii) demonstrate the performance of their innovative solutions in operational conditions. The spatial and temporal variations of the vineyard were finely characterized. This characterization has been carried out in partnership with suppliers of vegetation index mapping, either by proxidetection sensors (Lidar IFV-IRSTEA, ForceA, Greenseeker), by Unmanned Aerial Vehicles (VineView, Chouette, Fruition Science) or by satellite (ICV-Terranis Oenoview), in order to analyze how these indices can help to establish management zone maps for dose reduction. For instance, we combined a map of vegetation acquired by VineView and the Optidose® model to obtain a dose recommendation map. Plant protection products saving was estimated at bunch closure stage between 10 to 29% according to the disease pressure and to the spatial dose adjustment scale.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Xavier Delpuech1,*, Adrien Vergès1, Anice Cheraiet2, Olivier Naud2, Sébastien Codis1

1 Institut Français de la Vigne et du vin (IFV), Montpellier, France.
2 ITAP, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France.

Contact the author

Keywords

Grapevine, spraying technologies, crop protection, precision agriculture.

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Impact of grape ripening and post-harvest withering on must composition and fermentation kinetics

Postharvest dehydration is a widely employed technique in winemaking to enhance sugar concentration and secondary metabolites from grapes. Different grape varieties exhibit varying responses in terms of dehydration rate and the resulting chemical composition.

Innovative approach to energy efficiency benchmarking in the wine sector

The wine industry, a key sector for the European Union’s economy, exhibits significant energy consumption, amounting to approximately 1,750 million kWh annually within this geographic context, with major contributions from Italy, France, Spain, and Portugal (Fuentes Pila et al., 2015).

Strategies for sample preparation and data handling in GC-MS wine applications

It is often said that wine is a complex matrix and the chemical analysis of wine with the thousands of compounds detected and often measured is proof. New technologies can assist not only in separating and identifying wine compounds, but also in providing information about the sample as a whole. Information-rich techniques can offer a fingerprint of a sample (untargeted analysis), a comprehensive view of its chemical composition. Applying statistical analysis directly to the raw data can significantly reduce the number of compounds to be identified to the ones relevant to a particular scientific question. More data can equal more information, but also more noise for the subsequent statistical handling.

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

The use of elicitors to promote the biosynthesis of secondary metabolites in grapes has been tackled in several reports, however its study linked to nanotechnology is less developed.