Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 PulvéLab: an experimental vineyard for innovation in precision spraying

PulvéLab: an experimental vineyard for innovation in precision spraying

Abstract

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies is paving the way for the development and diffusion of innovative digital solutions for precision spraying in vineyards. The PulvéLab is a new project launched in 2018 by the research joint unit team ECOTECH (IFV-IRSTEA). This project aims to accelerate innovation in precision viticulture by offering public and private partners a dedicated vineyard estate of 10ha (Hérault, France) to (i) test, (ii) evaluate and (iii) demonstrate the performance of their innovative solutions in operational conditions. The spatial and temporal variations of the vineyard were finely characterized. This characterization has been carried out in partnership with suppliers of vegetation index mapping, either by proxidetection sensors (Lidar IFV-IRSTEA, ForceA, Greenseeker), by Unmanned Aerial Vehicles (VineView, Chouette, Fruition Science) or by satellite (ICV-Terranis Oenoview), in order to analyze how these indices can help to establish management zone maps for dose reduction. For instance, we combined a map of vegetation acquired by VineView and the Optidose® model to obtain a dose recommendation map. Plant protection products saving was estimated at bunch closure stage between 10 to 29% according to the disease pressure and to the spatial dose adjustment scale.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Xavier Delpuech1,*, Adrien Vergès1, Anice Cheraiet2, Olivier Naud2, Sébastien Codis1

1 Institut Français de la Vigne et du vin (IFV), Montpellier, France.
2 ITAP, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France.

Contact the author

Keywords

Grapevine, spraying technologies, crop protection, precision agriculture.

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

What triggers the decision to ripen 

The decision for grape berries to ripen involves a complex interplay of genetic regulation and environmental cues. This review explores the molecular mechanisms underlying the transition from vegetative growth to ripening, focusing on transcriptomic studies and the role of the NAC gene family. Transcriptomic analyses reveal a significant rearrangement of gene expression patterns during this transition, with up-regulation of ripening-related genes and down-regulation of those associated with vegetative growth. A molecular phenology scale providing a high-precision map of berry transcriptomic development, indicates that key molecular changes occur well before the onset of ripening.

Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Wine oxidation phenomena during the different processes of winemaking, aging and storage are closely related to the presence of oxygen and to the wine’s capacity for consumption.

Grape berry size is a key factor in determining New Zealand Pinot noir wine composition

Making high quality but affordable Pinot noir (PN) wine is challenging in most terroirs and New Zealand’s (NZ) situation is no exception. To increase the probability of making highly typical PN wines producers choose to grow grapes in cool climates on lower fertility soils while adopting labour intensive practices. Stringent yield targets and higher input costs necessarily mean that PN wine cost is high, and profitability lower, in line-priced varietal wine ranges. To understand the reasons why higher yielding vines are perceived to produce wines of lower quality we have undertaken an extensive study of PN in NZ. Since 2018, we established a network of twelve trial sites in three NZ regions to find individual vines that produced acceptable commercial yields (above 2.5kg per vine) and wines of composition comparable to “Icon” labels. Approximately 20% of 660 grape lots (N = 135) were selected from within a narrow juice Total Soluble Solids (TSS) range and made into single vine wines under controlled conditions. Principal Component Analysis of the vine, berry, juice and wine parameters from three vintages found grape berry mass to be most effective clustering variable. As berry mass category decreased there was a systematic increase in the probability of higher berry red colour and total phenolics with a parallel increase in wine phenolics, changed aroma fraction and decreased juice amino acids. The influence of berry size on wine composition would appear stronger than the individual effects of vintage, region, vineyard or vine yield. Our observations support the hypothesis that it is possible to produce PN wines that fall within an “Icon” benchmark composition range at yields above 2.5kg per vine provided that the Leaf Area:Fruit Weight ratio is above 12cm2 per g, mean berry mass is below 1.2g and juice TSS is above 22°Brix.

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).

Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Hillside vineyards have a great potential to produce world class wines. The unique microclimate lead to the production of rich, flavory wines.