Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Innovations on red winemaking process by ultrasound technology

Innovations on red winemaking process by ultrasound technology

Abstract

High power ultrasound has been recently recognized one of the most promising technologies in winemaking processes, especially after the recent OIV resolution, concerning the application of ultrasounds on crushed grapes to promote the extraction of skin compounds. The present work resumes the pluriannual researches carried out at laboratory and industrial scale, aimed to study the effect of ultrasounds during different steps of the red winemaking process, using respectively: a static laboratory sonifier (20 kHz) and a pilot plant at continuous mode (27 kHz).  

A number of technological experiments were carried out on different grape cultivars from different wineries and producing areas, to study properly the potential effectiveness of ultrasounds on the maceration process. In all the industrial experiments, the crushed grapes were split into equal and homogeneous aliquots by an appropriate Y-valve to ensure the comparison of untreated and sonicated samples. Sonication induced a higher extraction rate of polyphenols compounds from grape skins and seeds, and allowed a 40-60% reduction of the maceration time, giving besides significant advantages from an energetic and economic point of view. Ultrasound showed nonetheless remarkable advantages on color stability and sensorial characteristics. 

The effect of ultrasound amplitude and treatment time was also studied, at laboratory scale, on anthocyanins, tannins, and color stability indices. Anthocyanins and chromatic properties are preserved by ultrasounds and a potential chemical effect on the evolution of some analytical indices during wine aging has been highlighted. 

Ultrasound could be considered as an emerging technology aimed to reduce the inputs of red winemaking process and to develop a novel practice.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Andrea Natolino1, Tomás Roman2, Giorgio Nicolini2, Emilio Celotti1

1 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine (Italy)
2 Edmund Mach Fundation (Italy)

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact.

Bioprotective effect of non-Saccharomyces yeasts in wines made without SO2

The sulphur dioxide (SO2) is the most widely used additive in the wine industry because of its preservative action. However, in recent years the number of wineries that produce wines without SO2 has increased significantly because its allergenic character.

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a vineyard in southwestern France

Viticulture is facing two major changes – climate change and agroecological transition. In both cases, soil quality is seen as a lever to move towards a more sustainable viticulture. However, soil biological quality is little considered in the implementation of viticultural practices. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it brings together winegrowers from the south-west of France, scientists, advisors and technicians, around a project focused on viticultural soil biological functioning and the design of technical routes more respectful toward soil heritage. To achieve this, the project aims to acquire references on the impact of viticultural practices on soil biology from a dynamic way, and to test a methodology to integrate information provided by the soil bioindicators to manage farming systems. A set of indicators of soil biological quality are evaluated in the project: microorganisms (bacteria and fungi abundance and diversity), fauna (abundance and diversity of nematodes and earthworms), physico-chemical characteristics, soil structure assessment and degradation rate of organic matter. Based on a network of 13 plots that have been subject to an initial diagnosis in 2017, several agronomical practices to restore soil fertility are experimented to redesign the cropping system (for instance plant cover, organic matter inputs, reduction of herbicides, mineral fertilizers). System redesign was made in collaboration by winegrowers and an interdisciplinary group of experts (agronomists, biologists). Several indicators are measured on vine and soil at each vintage to assess vine health and productivity. At the end of the project (2021), a final diagnosis was carried out. Gascogn’Innov allowed to create a regional database on the quality of wine-growing soils, which permitted to evaluate the effect of practices according to soil types. Especially, decreasing the intensity of tillage and increasing the duration and diversity of grass coverage tends to increase the abundance of all the organisms studied. This project confirmed the value of soil biological quality indicators to drive the sustainability of practices, but also highlighted the key-role of expertise, in both agronomy and soil biology, to help winegrowers understand and appropriate their soil quality diagnoses.

Global warming effects on grape growing climate zones within the Rioja Appllation (DOCa Rioja) in north Spain

Aims: The aims of this work were (1) to assess the changes in some of the main bioclimatic indices used for climate viticultural zoning within the Rioja Appellation area in the north of Spain between 1950-2014 (60 years), and (2) to carry out a comprehensive sociological evaluation among grapegrowers and winemakers of this region, to better understand the impact of climate change on their activity, their degree of concern about it and the potential adaptation measures they would be willing to adopt to cope with it in future years.