Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Innovations on red winemaking process by ultrasound technology

Innovations on red winemaking process by ultrasound technology

Abstract

High power ultrasound has been recently recognized one of the most promising technologies in winemaking processes, especially after the recent OIV resolution, concerning the application of ultrasounds on crushed grapes to promote the extraction of skin compounds. The present work resumes the pluriannual researches carried out at laboratory and industrial scale, aimed to study the effect of ultrasounds during different steps of the red winemaking process, using respectively: a static laboratory sonifier (20 kHz) and a pilot plant at continuous mode (27 kHz).  

A number of technological experiments were carried out on different grape cultivars from different wineries and producing areas, to study properly the potential effectiveness of ultrasounds on the maceration process. In all the industrial experiments, the crushed grapes were split into equal and homogeneous aliquots by an appropriate Y-valve to ensure the comparison of untreated and sonicated samples. Sonication induced a higher extraction rate of polyphenols compounds from grape skins and seeds, and allowed a 40-60% reduction of the maceration time, giving besides significant advantages from an energetic and economic point of view. Ultrasound showed nonetheless remarkable advantages on color stability and sensorial characteristics. 

The effect of ultrasound amplitude and treatment time was also studied, at laboratory scale, on anthocyanins, tannins, and color stability indices. Anthocyanins and chromatic properties are preserved by ultrasounds and a potential chemical effect on the evolution of some analytical indices during wine aging has been highlighted. 

Ultrasound could be considered as an emerging technology aimed to reduce the inputs of red winemaking process and to develop a novel practice.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Andrea Natolino1, Tomás Roman2, Giorgio Nicolini2, Emilio Celotti1

1 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine (Italy)
2 Edmund Mach Fundation (Italy)

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

Maturation under different SO2 environments: the impact on amino acid and volatile profile for two white wines

EU countries are in the top 16 of the world’s wine producers. To respond to a public health concern, caused by SO2 excessive exposure

Grapevine genotypes with potential for reducing the carbon footprint in the atmosphere and cultivation in a biological system

The concentration of CO2 in the atmosphere is increasing from year to year. Taking into account the calculations of the greenhouse gas inventory, it was found that approximately 70% of CO2 in the atmosphere is absorbed by vegetation (forests, agricultural land, etc.).

Ripening of Mencía grape cultivar in different edaphoclimatic situations (D.O. Ribeira Sacra, Spain)

Ribeira Sacra is a Spanish Denominación de Origen (D.O.) for wines, located in Galicia, NW Spain.