Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Innovations on red winemaking process by ultrasound technology

Innovations on red winemaking process by ultrasound technology

Abstract

High power ultrasound has been recently recognized one of the most promising technologies in winemaking processes, especially after the recent OIV resolution, concerning the application of ultrasounds on crushed grapes to promote the extraction of skin compounds. The present work resumes the pluriannual researches carried out at laboratory and industrial scale, aimed to study the effect of ultrasounds during different steps of the red winemaking process, using respectively: a static laboratory sonifier (20 kHz) and a pilot plant at continuous mode (27 kHz).  

A number of technological experiments were carried out on different grape cultivars from different wineries and producing areas, to study properly the potential effectiveness of ultrasounds on the maceration process. In all the industrial experiments, the crushed grapes were split into equal and homogeneous aliquots by an appropriate Y-valve to ensure the comparison of untreated and sonicated samples. Sonication induced a higher extraction rate of polyphenols compounds from grape skins and seeds, and allowed a 40-60% reduction of the maceration time, giving besides significant advantages from an energetic and economic point of view. Ultrasound showed nonetheless remarkable advantages on color stability and sensorial characteristics. 

The effect of ultrasound amplitude and treatment time was also studied, at laboratory scale, on anthocyanins, tannins, and color stability indices. Anthocyanins and chromatic properties are preserved by ultrasounds and a potential chemical effect on the evolution of some analytical indices during wine aging has been highlighted. 

Ultrasound could be considered as an emerging technology aimed to reduce the inputs of red winemaking process and to develop a novel practice.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Andrea Natolino1, Tomás Roman2, Giorgio Nicolini2, Emilio Celotti1

1 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine (Italy)
2 Edmund Mach Fundation (Italy)

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Characterization of Brettanomyces bruxellensis biofilm, a resistance strategy to persist in wine-related environments

AIM: Biofilm is a resistance mechanism deployed by microorganisms to adapt to stresses, leading to their persistence in the environment. In the case of Brettanomyces bruxellensis, a wine spoilage yeast, knowledge about its capacity to form biofilm remains limited although this potential strategy could explain its recurring presence in cellars.

Defining gene regulation and co-regulation at single cell resolution in grapevine

Conventional molecular analyses provide bulk genomic/transcriptomic data that are unable to reveal the cellular heterogeneity and to precisely define how gene networks orchestrate organ development. We will profile gene expression and identify open chromatin regions at the individual cells level, allowing to define cell-type specific regulatory elements, developmental trajectories and transcriptional networks orchestrating organ development and function. We will perform scRNA-seq and snATAC-seq on leaf/berry protoplasts and nuclei and combine them with the leaf/berry bulk tissues obtained results, where the analysis of transcripts, chromatin accessibility, histone modification and transcription factor binding sites showed that a large fraction of phenotypic variation appears to be determined by regulatory rather than coding variation and that many variants have an organ-specific effect.

Effects of soil water content and environmental conditions on vine water status and gas exchange of Vitis vinifera L. cv. chardonnay

Vine water status has a significant influence on vineyard yield and berry composition (Williams and Matthews, 1990; Williams et al., 1994). It has been hypothesized that the response of plants to soil water deficits may be due to some sort of “root signal” (Davies and Zhang, 1991). This signal probably arises due to the roots sensing a reduction in soil water content or an increase in the mecanical impedance as the soil dries out.

Meso-scale future climate modeling (5 km resolution): application over French wine regions under the SRES A2 scenario (2041-2050)

In order to assess climate change at regional scales suitable to viticulture, the outputs of ARPEGE_Climat global model (resolution 0.5°) were downscaled using the Regional Atmospheric

Landscape study of the Suzette rural district. A vineyard in the heart of the Dentelles de Montmirail

Le territoire de Suzette se développe sur un grand coteau viticole et boisé situé au cœur du site naturel des Dentelles de Montmirail (40km au nord d’Avignon). Ce site est à la fois l’un des pôles d’attraction touristique du département et le lieu d’une production viticole renommée (Gigondas, Vacqueyras, Beaumes de Venise, … ). Cet ensemble remarquable de terrasses viticoles et de crêtes rocheuses et boisées, forme un des paysages emblématiques du Vaucluse. La commune est actuellement soumise à une importante pression foncière due à une forte demande résidentielle. Le paysage du coteau forme et possède de ce fait un patrimoine culturel de valeur et une image de marque importante pour la production viticole locale.