Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Innovations on red winemaking process by ultrasound technology

Innovations on red winemaking process by ultrasound technology

Abstract

High power ultrasound has been recently recognized one of the most promising technologies in winemaking processes, especially after the recent OIV resolution, concerning the application of ultrasounds on crushed grapes to promote the extraction of skin compounds. The present work resumes the pluriannual researches carried out at laboratory and industrial scale, aimed to study the effect of ultrasounds during different steps of the red winemaking process, using respectively: a static laboratory sonifier (20 kHz) and a pilot plant at continuous mode (27 kHz).  

A number of technological experiments were carried out on different grape cultivars from different wineries and producing areas, to study properly the potential effectiveness of ultrasounds on the maceration process. In all the industrial experiments, the crushed grapes were split into equal and homogeneous aliquots by an appropriate Y-valve to ensure the comparison of untreated and sonicated samples. Sonication induced a higher extraction rate of polyphenols compounds from grape skins and seeds, and allowed a 40-60% reduction of the maceration time, giving besides significant advantages from an energetic and economic point of view. Ultrasound showed nonetheless remarkable advantages on color stability and sensorial characteristics. 

The effect of ultrasound amplitude and treatment time was also studied, at laboratory scale, on anthocyanins, tannins, and color stability indices. Anthocyanins and chromatic properties are preserved by ultrasounds and a potential chemical effect on the evolution of some analytical indices during wine aging has been highlighted. 

Ultrasound could be considered as an emerging technology aimed to reduce the inputs of red winemaking process and to develop a novel practice.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Andrea Natolino1, Tomás Roman2, Giorgio Nicolini2, Emilio Celotti1

1 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine (Italy)
2 Edmund Mach Fundation (Italy)

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Phenolic characterization of four different red varieties with “Caíño” denomination cultivated in Northwestern Spain

In this work, these four red varieties were characterized in terms of phenolic composition. Thus, the anthocyanin accumulation and the extractability evolution during ripening were compared.

Unravelling the microbial community structure and aroma profile of Agiorgitiko wine under different inoculation schemes

Agiorgitiko (Vitis vinifera L. cv.) is the most widely cultivated indigenous red grape variety in Greece, known for the production of Protected Designation of Origin Nemea wines.

Preliminary results on the effect of different organic mulching on wine polyphenol content

Soil mulching is an interesting strategy to reduce soil evaporation, assist in weed control, improve soil structure and organic content, increase soil water infiltration, and decrease diurnal temperature fluctuations

Prosensorial potential of new fungi-resistant varieties in modern oenology

The introduction into the Italian wine supply chain of the latest generation of fungi-resistant grapevine varieties, endowed with a greater or lesser strong resistance to downy and powdery mildews, represents a valid tool of making viticulture more sustainable, particularly in northern regions of the peninsula, where climatic conditions accentuate the pressure of fungal diseases. However, the affirmation of resistant varieties is a function of their agronomic value, as well as of their oenological and sensorial value. The purpose of this study was to evaluate in detail the sensory potential of the new resistant varieties, in order to understand their real possibility of inclusion in the modern global enological context.

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.