Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Prefermentative CO2 saturation of grape must to obtaining white wines with low SO2 content

Prefermentative CO2 saturation of grape must to obtaining white wines with low SO2 content

Abstract

The objective this work has been study the possibility of partially or completely replacing sulphur in the winemaking of white wines through the use of the prefermentative saturation of musts with CO2. Three types of wines were made from the same Airén and Chardonnay must and under the same conditions: Control wine, reduction of SO2 in half and total reduction of SO2.

No technologically important variations in the usual oenological parameters were observed in freshly bottled wines by saturating the musts with CO2 and decreasing SO2 doses. In terms of color, it should be noted that all wines of both varieties had similar values of luminosity and that the saturation of musts with CO2 produced wines with more green tones and the decrease in doses of SO2 with more yellow notes. In relation to volatile composition, the saturation of musts with CO2 and the reduction of SO2 doses produced wines with higher concentrations of compounds responsible for fruity and floral notes. At the sensory level, the results of volatile analysis were corroborated and both trained tasters and consumers positively valued the wines. Microbial stability and colour were monitored for 12 months, a normal marketing period for young wines, with the following conclusions obtained:

Signs of malolactic fermentation were observed in wines without SO2. However, wines with low doses of SO2 remained perfectly stable. With regard to color after 12 months the wines of both varieties evolve in a favorable way, a slightly more intense color, but no notes of oxidation are seen. Effective control of acetic acid bacteria over time has been proven as the volatile acidity of these wines is similar to that of control wines and does not increase the year of bottling.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

P.M. Izquierdo Cañas1*, S. Guri Baiget2, E. García Romero1, V. Cejudo Martín de Almagro2, J. Mallen Pomes2

1 Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Ctra. Albacete s/n, 13700 Tomelloso, Ciudad Real, Spain.
2 Carburos Metálicos S. A.- Air Products Group. Avda de la Fama 1, 08940 Cornellà de Llobregat, Barcelona, Spain.

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

From varietal and terroir expression to off-odors: chemical background of wine aroma evolution during aging

Expression of sensory attributes that reflect the varietal and geographical origin of wines (aka terroir) is central to perceived wine quality and reputation of wine producing regions.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

Effects of the biodynamic preparations 500 and 501 on vine and berry physiology, pedology and the soil microbiome

In the pursuit of increasing sustainability, climate change resiliency and independence of synthetic pesticides in agriculture, the interest of consumers and producers in organic and biodynamic farming is steadily increasing. This is in particular the case for the vitivinicultural industry in Europe, where more and more producers are converting from organic to biodynamic farming. However, clear scientific evidence showing that biodynamic farming improves vine physiology, vine stress resilience, berry or wine quality, or is more sustainable for the environment is still lacking although this issue has been addressed by several research teams worldwide.

Effect of ozone application for low-input postharvest dehydration of wine grapes 

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g. sweet, dry/reinforced). The modern facilities (dehydrating rooms) used for this purpose are equipped with systems for artificially controlling the inside environment parameters, to obtain the desired dehydration kinetic and preserve the grapes from grey mold (Botrytis cinerea) infection, However, the conditioning systems are extremely energy-demanding and the identification and practical applications of solutions effective in controlling/reducing the postharvest decay would reduce the costs of the operation of the dehydration facilities. To this end, we explored the potential of ozone-based treatments on harvested grapes and preliminarily tested if the treatment could impact the normal behavior and metabolism of grapes during the traditionally slow dehydration practice.

Cover crop influence on water relations, yield, grape and wine composition of Pinot noir

The effect of cover crop on the water relations, yield and grape composition of Pinot noir vines was investigated during two seasons (2003 and 2004) in a gravely soil located in Tarragona (Spain). Seventeen-year-old vines, grafted onto R110 and trained onto a Ballerina training system, were used.