Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Prefermentative CO2 saturation of grape must to obtaining white wines with low SO2 content

Prefermentative CO2 saturation of grape must to obtaining white wines with low SO2 content

Abstract

The objective this work has been study the possibility of partially or completely replacing sulphur in the winemaking of white wines through the use of the prefermentative saturation of musts with CO2. Three types of wines were made from the same Airén and Chardonnay must and under the same conditions: Control wine, reduction of SO2 in half and total reduction of SO2.

No technologically important variations in the usual oenological parameters were observed in freshly bottled wines by saturating the musts with CO2 and decreasing SO2 doses. In terms of color, it should be noted that all wines of both varieties had similar values of luminosity and that the saturation of musts with CO2 produced wines with more green tones and the decrease in doses of SO2 with more yellow notes. In relation to volatile composition, the saturation of musts with CO2 and the reduction of SO2 doses produced wines with higher concentrations of compounds responsible for fruity and floral notes. At the sensory level, the results of volatile analysis were corroborated and both trained tasters and consumers positively valued the wines. Microbial stability and colour were monitored for 12 months, a normal marketing period for young wines, with the following conclusions obtained:

Signs of malolactic fermentation were observed in wines without SO2. However, wines with low doses of SO2 remained perfectly stable. With regard to color after 12 months the wines of both varieties evolve in a favorable way, a slightly more intense color, but no notes of oxidation are seen. Effective control of acetic acid bacteria over time has been proven as the volatile acidity of these wines is similar to that of control wines and does not increase the year of bottling.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

P.M. Izquierdo Cañas1*, S. Guri Baiget2, E. García Romero1, V. Cejudo Martín de Almagro2, J. Mallen Pomes2

1 Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Ctra. Albacete s/n, 13700 Tomelloso, Ciudad Real, Spain.
2 Carburos Metálicos S. A.- Air Products Group. Avda de la Fama 1, 08940 Cornellà de Llobregat, Barcelona, Spain.

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Vineyard soils characterization and its influence on the grape quality of cv. Carmenère in the Maipo Valley, Chile

Produced since 1998, the De Martino Single Vineyard Carmenère is the first Carmenère Icon wine of Chile. The grapes are coming form a plot of 11 ha in Isla de Maipo, where the technicians of the winery have developed knowledge of their work, resulting in 3 levels of quality of the grapes.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

Terroir and vine water relation effects on grape ripening and wine quality of Syrah/R99

A Syrah/R99 vineyard in the Stellenbosch area was used. The vineyard is vertically trained and spaced 2.75 x 1.5 m in north-south orientated rows on terroir with Glenrosa soil and west-facing slope. Irrigation (to 100% field water capacity) treatments were applied at different development stages [all stages (including berry set stage); pea size; véraison; post-véraison]. Combined effects of water status and ripeness level were investigated. Preliminary results are presented.

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

Influence of must fining on oxygen consumption rate, oxidation susceptibility and electrochemical characteristics of different white grape musts

AIM: Pre-fermentative fining is one of the central steps of white wine production. Mainly aiming at reducing the levels of suspended solids, juice fining can also assist in reducing the content of oxidizable phenolics and therefore the susceptibility of juice to oxidation.