Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Prefermentative CO2 saturation of grape must to obtaining white wines with low SO2 content

Prefermentative CO2 saturation of grape must to obtaining white wines with low SO2 content

Abstract

The objective this work has been study the possibility of partially or completely replacing sulphur in the winemaking of white wines through the use of the prefermentative saturation of musts with CO2. Three types of wines were made from the same Airén and Chardonnay must and under the same conditions: Control wine, reduction of SO2 in half and total reduction of SO2.

No technologically important variations in the usual oenological parameters were observed in freshly bottled wines by saturating the musts with CO2 and decreasing SO2 doses. In terms of color, it should be noted that all wines of both varieties had similar values of luminosity and that the saturation of musts with CO2 produced wines with more green tones and the decrease in doses of SO2 with more yellow notes. In relation to volatile composition, the saturation of musts with CO2 and the reduction of SO2 doses produced wines with higher concentrations of compounds responsible for fruity and floral notes. At the sensory level, the results of volatile analysis were corroborated and both trained tasters and consumers positively valued the wines. Microbial stability and colour were monitored for 12 months, a normal marketing period for young wines, with the following conclusions obtained:

Signs of malolactic fermentation were observed in wines without SO2. However, wines with low doses of SO2 remained perfectly stable. With regard to color after 12 months the wines of both varieties evolve in a favorable way, a slightly more intense color, but no notes of oxidation are seen. Effective control of acetic acid bacteria over time has been proven as the volatile acidity of these wines is similar to that of control wines and does not increase the year of bottling.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

P.M. Izquierdo Cañas1*, S. Guri Baiget2, E. García Romero1, V. Cejudo Martín de Almagro2, J. Mallen Pomes2

1 Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Ctra. Albacete s/n, 13700 Tomelloso, Ciudad Real, Spain.
2 Carburos Metálicos S. A.- Air Products Group. Avda de la Fama 1, 08940 Cornellà de Llobregat, Barcelona, Spain.

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Exploring zoxamide sensitivity in Plasmopara viticola populations: implications for fungicide management in precision agriculture

Fungicides play a critical role in managing grapevine downy mildew caused by the oomycete Plasmopara viticola, a biotrophic and polycyclic pathogen with a high risk of fungicide resistance. Zoxamide, categorized as a low to medium resistance risk, disrupts cell division by inhibiting tubulin polymerization. Resistance to zoxamide is uncommon in field isolates. This six-year study (2017-2022) aimed to detect and quantify zoxamide sensitivity in P. viticola populations across varying resistance pressures in Italian grapevine regions. Analysis of 126 samples from 57 vineyards, mainly in North-Eastern Italy, revealed that most samples exhibited EC50, EC95, and MIC values below 0.1 and 10 mg/L of zoxamide, respectively. Nineteen vineyards showed reduced sensitivity (MIC>100 mg/L), but only four samples were characterized by 24-54% resistant oospores at >100 mg/L of zoxamide.

Managing precision irrigation in vineyards: hydraulic and molecular signaling in eight grapevine varieties

Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize vineyard irrigation management and identify the most suitable varieties. In Mediterranean regions, the higher frequency of heat waves and droughts highlights the importance of precision irrigation to meet vine water demands and demonstrates the necessity for a deeper understanding of the different physiological responses among varieties under water stress. In this context, previous reports show an interplay between stomatal regulation of transpiration and changes in leaf hydraulic conductivity, also with the involvement of aquaporins (AQPs), particularly under water stress. However, how those signaling mechanisms are regulated in different grapevine varieties along phenological phases is unclear.

On-the-go resistivity sensors employment to support soil survey for precision viticulture

There is an increasing need in agriculture to adopt site-specific management (precision farming) because of economic and environmental pressures. Geophysical on-the-go sensors, such as the ARP (Automatic Resistivity Profiling) system, can effectively support soil survey by optimizing sampling density according to the spatial variability of apparent electrical resistivity (ER).

Timing of leaf removal effects on vitis vinifera L. Cv. Grenache differed on two contrasting seasons

Warming trends over the winegrowing regions lead to an advance of grapevine phenology, diminution of yield and increased sugar content and must pH with a lower polyphenol content, especially anthocyanins. Canopy management practices are applied to control the source sink balance and improve the cluster microclimate to enhance berry composition. We hyphothesized that an early leaf removal might promote a delayed ripening through severe defoliation after fruitset; whereas, a late leaf removal at mid-ripening would reduce sugar accumulation.

A microbial overview of txakoli wine: the case of three appellations of origin

The Txakoli, a white wine produced in the Basque Country (North of Spain), has recently gained popularity due to wine quality improvement and increase in both acreages of production and wine consumption. The aim of this study was to characterize the chemical and microbiological differences between Txakoli wines made with grapes from different sites.