terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

Abstract

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

The objective of this work was to determine the effect of two plant fibers in the reduction of undesirable compounds and to correlate their behavior with their polysaccharide composition, analyzed using comprehensive microarray polymer profiling (CoMPP). [2] The results showed that a white grape pomace fiber presented the highest capacity for histamine reduction in wine and also reduced large amounts of pesticides, although the highest effectiveness to remove pesticides residues was found when a cereal fiber was used. Looking for a correlation between effectivity and composition, we could see how grape fiber contained high contents of pectic polysaccharides, xyloglucans and arabinogalactan proteins (AGP) whereas the behavior of cereal fiber can only be associated to its xylan content, since the pectic polysaccharides were absent. This was a surprising finding since it is known that fibers may affect wine color due to the high affinity of their polysaccharides, especially pectic polysaccharides for polyphenols, but when looking at the effect of these two fibers on wine chromatic characteristics, the cereal fiber largely affected wine color, more than the grape pomace fiber, so another factor, such as the porosity of the fiber, must also be an important fact regarding their effectiveness.

References:

  1. Jiménez-Martínez M.D. et al. (2018). Performance of purified grape pomace as a fining agent to reduce the levels of some contaminants from wine. Food Addit. Contam. Part A, 35 (6): 1061–1070, DOI.org/10.1080/19440049.2018.1459050
  2. Moller, I. et al. (2008). High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconj. J., 25(1): 37–48, DOI: 10.1007/s10719-007-9059-7

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Lucía Osete Alcaraz1, Encarna Gómez Plaza1, Paula Pérez Porras1, Bodil Jørgensen2, José Oliva Ortiz3, Miguel Ángel Cámara Botía3, Ricardo Jurado Fuentes4, Ana Belén Bautista Ortín1*

1 Departamento de Tecnología de Alimentos, Facultad de Veterinaria, Universidad de Murcia, 30071, Murcia, España
2 Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
3 Departamento de Química Agrícola, Facultad de Química, Universidad de Murcia
4 Agrovin S.A., Avenida de los Vinos s/n, 13600 Alcázar de San Juan, Ciudad Real, España

Contact the author*

Keywords

wine, fining, vegetal fiber, polysaccharides, CoMPP

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The use of plasma activated water in barrel disinfection: impact on oak wood composition

The use of barrels is a practice that improves the quality of wines. The porous structure of wood favors the accumulation of microorganisms that can deteriorate the quality of wines so that barrel cleaning and sanitizing treatments are essential. The burning of sulphur discs has been the most common practice in winemaking because ots biocide effect. Nevertheless, its effectiveness is still insufficient and it is harmful for human health.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.