Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Non-invasive quantification of phenol content during red wine fermentations

Non-invasive quantification of phenol content during red wine fermentations

Abstract

Phenolic compounds are responsible for the most important red wine quality attributes. Anthocyanins and tannins play crucial roles in color and mouthfeel properties of red wines. Phenolic analysis in the winery is hindered by analytical constrains. The possibility to quantify phenolic content non-invasively from a fermenting tank will provide phenolic data in real time and with absence of sampling. This could be achieved by making use of the fluorescence properties of phenolic compounds. Front-face fluorescence was in this case used to obtain fluorescence spectral properties of wines directly during the fermentation tank. Adapting the sample geometry, direct measurement from a fermenting tank through a crystal window can be obtained. Moreover, the fluorescence spectral properties were correlated with phenolic levels using machine learning techniques and accurate spectral calibrations were obtained for total phenol content, anthocyanins (mg/L) and tannins (mg/L). A prototype device for the measurement of fluorescence spectral properties was developed. The fluorescence spectrometer showed the ability to quantify phenolic content during red wine fermentations with the absence of sampling and in a non-invasive manner.  

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Jose Luis Aleixandre Tudo1, Isabel dos Santos1, Wessel du Toit1, Gurthwin Bosman2

1 South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Stellenbosch University, South Africa
2 Department of Physics. Stellenbosch University, Stellenbosch, South Africa

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

Towards an ecological architecture inspired by underground cellars: An example of the thermal inertia of Moldovan underground cellars and new geothermal and Canadian well approaches

The search for underground shelters is one of the oldest forms of human habitation, providing refuge in extreme environments such as deserts and polar regions.

The use of elicitors in the vineyard to mitigate the effects of climate change on wine quality

The wine sector is being directly affected by climate change. Temperatures above 30ºC can cause a lag between the ripening of the berry pulp (a rapid increase in sugar content) and the skin

Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Sulfur dioxide is the most commonly used additive in oenology to protect wine from oxidation and microorganisms. Once added to wine SO2 is able to react with carbonyl compounds to form carbonyl bisulfites what affects their reactivity.

Identification of key-odorants in Sauternes Wines

The aim of the present work was to investigate Sauternes wines aromas. The flavor profiles of two wines (vintages 2002 and 2003) were investigated. Key-odorants have been determined by AEDA applied to Amberlite XAD-2 resin extracts. Various complementary techniques were used to identify the compounds (pHMB extraction, chemical synthesis of non-commercial standards, co-injections on two capillary columns, odor description at the sniffing port, GC-MS and GC-PFPD).