Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Non-invasive quantification of phenol content during red wine fermentations

Non-invasive quantification of phenol content during red wine fermentations

Abstract

Phenolic compounds are responsible for the most important red wine quality attributes. Anthocyanins and tannins play crucial roles in color and mouthfeel properties of red wines. Phenolic analysis in the winery is hindered by analytical constrains. The possibility to quantify phenolic content non-invasively from a fermenting tank will provide phenolic data in real time and with absence of sampling. This could be achieved by making use of the fluorescence properties of phenolic compounds. Front-face fluorescence was in this case used to obtain fluorescence spectral properties of wines directly during the fermentation tank. Adapting the sample geometry, direct measurement from a fermenting tank through a crystal window can be obtained. Moreover, the fluorescence spectral properties were correlated with phenolic levels using machine learning techniques and accurate spectral calibrations were obtained for total phenol content, anthocyanins (mg/L) and tannins (mg/L). A prototype device for the measurement of fluorescence spectral properties was developed. The fluorescence spectrometer showed the ability to quantify phenolic content during red wine fermentations with the absence of sampling and in a non-invasive manner.  

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Jose Luis Aleixandre Tudo1, Isabel dos Santos1, Wessel du Toit1, Gurthwin Bosman2

1 South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Stellenbosch University, South Africa
2 Department of Physics. Stellenbosch University, Stellenbosch, South Africa

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Comparing the chemical and sensory consequences of grapevine smoke exposure in grapes and wine from different cultivars and different wine regions in Australia

Aim: This study aimed to benchmark the chemical and sensory consequences of grapevine exposure to smoke, by comparing: (i) the concentration of volatile phenols and volatile phenol glycosides in control and smoke-affected grapes from different cultivars and different wine regions; and (ii) the chemical and sensory profiles of wines made from control and smoke-affected grapes, from different cultivars.  

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes.

Cultivation site effect on the quality of Moscato di Pantelleria

n 1997 and 1999, sixteen cultivation sites of cv. Muscat of Alexandria different for pedological conditions, altitude and exposition were selected through all Pantelleria isle. In 1997 in each site

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

PulvéLab: an experimental vineyard for innovation in precision spraying

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies