Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Non-invasive quantification of phenol content during red wine fermentations

Non-invasive quantification of phenol content during red wine fermentations

Abstract

Phenolic compounds are responsible for the most important red wine quality attributes. Anthocyanins and tannins play crucial roles in color and mouthfeel properties of red wines. Phenolic analysis in the winery is hindered by analytical constrains. The possibility to quantify phenolic content non-invasively from a fermenting tank will provide phenolic data in real time and with absence of sampling. This could be achieved by making use of the fluorescence properties of phenolic compounds. Front-face fluorescence was in this case used to obtain fluorescence spectral properties of wines directly during the fermentation tank. Adapting the sample geometry, direct measurement from a fermenting tank through a crystal window can be obtained. Moreover, the fluorescence spectral properties were correlated with phenolic levels using machine learning techniques and accurate spectral calibrations were obtained for total phenol content, anthocyanins (mg/L) and tannins (mg/L). A prototype device for the measurement of fluorescence spectral properties was developed. The fluorescence spectrometer showed the ability to quantify phenolic content during red wine fermentations with the absence of sampling and in a non-invasive manner.  

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Jose Luis Aleixandre Tudo1, Isabel dos Santos1, Wessel du Toit1, Gurthwin Bosman2

1 South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Stellenbosch University, South Africa
2 Department of Physics. Stellenbosch University, Stellenbosch, South Africa

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Embracing innovation for a future-ready wine industry: insights from Moldova’s AI-powered pilot project

In 2023–2024, the Republic of Moldova launched its first AI-powered wine pilot, integrating artificial intelligence into the vitivinicultural value chain.

Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Hillside vineyards have a great potential to produce world class wines. The unique microclimate lead to the production of rich, flavory wines.

Bioclimatic shifts and land use options for Viticulture in Portugal

Land use, plays a relevant role in the climatic system. It endows means for agriculture practices thus contributing to the food supply. Since climate and land are closely intertwined through multiple interface processes, climate change may lead to significant impacts in land use. In this study, 1-km observational gridded datasets are used to assess changes in the Köppen–Geiger and Worldwide Bioclimatic (WBCS)

The temperature‐based grapevine sugar ripeness (GSR) model for adapting a wide range of Vitis vinifera L. cultivars in a changing climate

 Temperatures are increasing due to climate change leading to advances in grapevine phenology and sugar accumulation in grape berries.

Where the sky is no limit — The transformation of wine marketing through text-to-video generation AI model

The introduction of ai-driven tools in digital content creation represents a significant shift in the landscape of marketing, particularly for industries reliant on rich visual storytelling such as the wine sector. The development of ai models like openai’s sora, runway’s gen-2 or google’s lumiere, which can generate realistic video content from textual descriptions, offers promising new avenues for enhancing brand narrative and consumer engagement. This research explores the potential of text-to-video (t2v) ai models to revolutionize wine marketing by creating dynamic, engaging content that captures the essence of vineyards and their products without the need for traditional video production processes.