Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Non-invasive quantification of phenol content during red wine fermentations

Non-invasive quantification of phenol content during red wine fermentations

Abstract

Phenolic compounds are responsible for the most important red wine quality attributes. Anthocyanins and tannins play crucial roles in color and mouthfeel properties of red wines. Phenolic analysis in the winery is hindered by analytical constrains. The possibility to quantify phenolic content non-invasively from a fermenting tank will provide phenolic data in real time and with absence of sampling. This could be achieved by making use of the fluorescence properties of phenolic compounds. Front-face fluorescence was in this case used to obtain fluorescence spectral properties of wines directly during the fermentation tank. Adapting the sample geometry, direct measurement from a fermenting tank through a crystal window can be obtained. Moreover, the fluorescence spectral properties were correlated with phenolic levels using machine learning techniques and accurate spectral calibrations were obtained for total phenol content, anthocyanins (mg/L) and tannins (mg/L). A prototype device for the measurement of fluorescence spectral properties was developed. The fluorescence spectrometer showed the ability to quantify phenolic content during red wine fermentations with the absence of sampling and in a non-invasive manner.  

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Jose Luis Aleixandre Tudo1, Isabel dos Santos1, Wessel du Toit1, Gurthwin Bosman2

1 South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Stellenbosch University, South Africa
2 Department of Physics. Stellenbosch University, Stellenbosch, South Africa

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Taking advantages of innovative chemometric tools to unveil vineyard ecosystem dynamics: look across volatile secondary metabolites

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard ecosystems is required.

On sample preparation methods for fermentative beverage VOCs profiling by GCxGC-TOFMS

Study the influence of sample preparation methods on the volatile organic compounds (VOCs) profiling for fermentative beverages by GCxGC-TOFMS analysis. METHODS: Five common sample preparation methods were tested on pooled red wine, white wine, cider, and beer. Studied methods were DHS, Liquid-liquid extraction, mSBSE, SPE and SPME. VOCs were analyzed by GCxGC-TOFMS followed by data analysis with ChromaTOF. RESULTS: The volatile organic compounds (VOCs) profiling results were very dependent on the sample preparation methods.

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

Effect of different canopy managements on microclimate and carbon allocation in Vitis vinifera cv Chardonnay

Climate change strongly affects the wine-growing sector which increasingly requires in situ adaptation strategies aimed at preserving the sustainability of production. Investigating microclimate becomes crucial in comprehending environmental pressures on plants. The microclimatic investigation conducted in the Orvieto PDO (central Italy) allowed us to highlight the climatic dynamics occurring in the last 25 years and the frequency and intensity of abiotic stresses. Two management strategies for the canopy were identified: early defoliation (ELR) and foliar application of Basalt Flour ® (FB) compared to the ordinary management (C) of the company (bud selection and topping). The effects on plant vigour indices (LAI), resource allocation in terms of carbon stored in the above-ground organs of the vine, and the microclimate of the canopy and the berry were evaluated. In particular, microclimate was evaluated through a network of sensors connected wirelessly (Wireless Sensor Network), dedicated to collecting information on temperature and humidity in the canopy and clusters.

Study on the impact of clone on the varietal aroma of Xinomavro

It is well documented that varietal aroma is an important parameter of wine quality. Chemical compounds responsible for wine varietal aroma are sourced from secondary grape metabolites. Until today little research is conducted on the influence of vine clone on the grape aromatic content of Greek grape varieties. Xinomavro (Vitis vinifera L.) is one of the most important Greek grape varieties, valuable for the wine industry of Northern Greece since it contributes to the production of PDO wine of Naoussa, Amindeo and Goumenissa.