Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Non-invasive quantification of phenol content during red wine fermentations

Non-invasive quantification of phenol content during red wine fermentations

Abstract

Phenolic compounds are responsible for the most important red wine quality attributes. Anthocyanins and tannins play crucial roles in color and mouthfeel properties of red wines. Phenolic analysis in the winery is hindered by analytical constrains. The possibility to quantify phenolic content non-invasively from a fermenting tank will provide phenolic data in real time and with absence of sampling. This could be achieved by making use of the fluorescence properties of phenolic compounds. Front-face fluorescence was in this case used to obtain fluorescence spectral properties of wines directly during the fermentation tank. Adapting the sample geometry, direct measurement from a fermenting tank through a crystal window can be obtained. Moreover, the fluorescence spectral properties were correlated with phenolic levels using machine learning techniques and accurate spectral calibrations were obtained for total phenol content, anthocyanins (mg/L) and tannins (mg/L). A prototype device for the measurement of fluorescence spectral properties was developed. The fluorescence spectrometer showed the ability to quantify phenolic content during red wine fermentations with the absence of sampling and in a non-invasive manner.  

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Jose Luis Aleixandre Tudo1, Isabel dos Santos1, Wessel du Toit1, Gurthwin Bosman2

1 South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Stellenbosch University, South Africa
2 Department of Physics. Stellenbosch University, Stellenbosch, South Africa

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Agronomic and qualitative effects of early leaf removal on cv.

Aim: The regulation of the vegetative-reproductive balance of a vineyard is a critical aspect for the quality of grapes. Early leaf removal, generally applied before the phenological stage of flowering, is mainly used as a technique to control yield and improve grape health, aimed at increasing the quality of the wine.

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2

Influence of soil type and changes in soil solution chemistry on vine growth parameters and grape and wine quality in a central coast California vineyard

The objective of this study was to determine the influence of four soils with contrasting chemical and physical properties on vine growth parameters and wine chemistry in a Paso Robles, California Cabernet Sauvignon vineyard

Simplifying the measurement of different forms of cu in wines and strategies for efficient removal

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours

Hydraulic redistribution and water movement mechanisms in grapevines

Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution.