Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Mannoprotein extracts from wine lees: characterization and impact on wine properties

Mannoprotein extracts from wine lees: characterization and impact on wine properties

Abstract

This study aims at exploiting an undervalued winemaking by-product, wine yeast lees, by developing efficient and food-grade methods for the extraction of yeast glycoproteins. These extracts were then supplemented to wine and their impact on wine properties assessed. White wine lees were produced by fermenting Sauvignon blanc grape juice with S. cerevisiae Uvaferm HPS strain. Three extraction methods were applied on lees using physical (autoclave and sonication) or enzymatic (Glucanex®, an industrial β-glucanases) approaches. Glycoproteins extracts were characterized by SEC-HPLC and SDS-PAGE. After their addition to wine (0.5 g/L), no alteration of wine clarity was detected. The ultrasonication and enzymatic extracts, containing a relatively low amount of glycoproteins, led to a significant decrease in wine protein haze formation upon heat test (-7%). Conversely, the autoclave extract was the richest in glycoproteins and had a positive impact on wine foaming properties, inducing an increase in foam’s maximum height and stability which were 2.6 and 3.6 times higher compared to a model wine. The autoclave extract improved tartrate stability as shown by a decrease in wine conductance (-11%) compared to the untreated wine. Results suggest that white wine lees could be considered a valuable source of glycosylated proteins with potential applications in winemaking. In this context, the autoclave appears as the more promising method in terms of both efficiency and extract’s effectiveness. The proposed food-grade exploitation approach could represent an important tool to improve the environmental and economical sustainability of the wine supply chain.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Alberto De Iseppi1, Andrea Curioni1,2, Giovanna Lomolino1, Matteo Marangon1, Simone Vincenzi1,2 and Benoit Divol3

1Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020, Legnaro, Padova, Italy
2Centre for Research in Viticulture and Enology (CIRVE), Viale XXVIII Aprile 14, 31015, Conegliano, Italy
3South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

The evolution of the concept of geographical denomination in South America

Vers la fin du XX siècle, la vitiviniculture argentine a subi une profonde transformation qualitative atteignant toute la filière. L’analyse de l’évolution de la superficie des vignobles, l’élaboration des vins, la consommation et les exportations, permet de mettre en évidence ces changements. Dans ce contexte, l’origine apparaît comme un outil de force, d’expansion et de succès sur les marchés.

Modeling viticultural landscapes: a GIS analysis of the viticultural potential in the Rogue Valley of Oregon

Terroir is a holistic concept that relates to both environmental and cultural factors that together influence the grape growing to wine production continuum. The physical factors that influence the process include matching a given grape variety to its ideal climate along with optimum site characteristics of elevation, slope, aspect, and soil

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.

Effect of different winemaking practices on chemical composition, aroma profile and sensory perception of ribolla gialla sparkling wines

This study aims at evaluating the effects of different refermentation methods (Martinotti/Charmat vs. Classic) on the chemical composition, aroma profile and sensory characteristics of Ribolla Gialla sparkling wines; furthermore, certain winemaking practices (skin contact and use of pectolytic enzymes) were investigated considering the extraction of varietal aromas and aroma precursors. METHODS: Sparkling wines were produced at pilot-plant scale. Concerning refermentation methods, traditional Martinotti (MB – 30 days length), extended Martinotti (ML) with 4 months of aging on lees and Classic method (CL) with 11 months of aging on lees were compared; in a second trial, skin contact (MM), enzyme addition on must also subjected to maceration (ME), and enzyme addition on base wine (VE) were evaluated. All experimental trials were performed in triplicate. Basic chemical composition, varietal (terpenes and C13-norisoprenoids in free and bound form) and non-varietal aroma compounds were evaluated by LLE-GCMS analysis; finally, sensory analysis was also performed, by descriptive testing.