Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Adaptation of Lactobacilli towards low ph and SO2 to develop MLF in base musts for sparkling wines

Adaptation of Lactobacilli towards low ph and SO2 to develop MLF in base musts for sparkling wines

Abstract

In some white wines, malolactic fermentation (MLF) is very interesting, and for low pH wines this process is particularly difficult. Although MLF is generally not recommended for sparkling white wine, some winemakers prefer to promote MLF to contribute to organoleptic complexity. Oenococcus oeni is generally the bacterium of choice for MLF. However, people’s interest in other species (such as Lactobacillus) is increasing. However, one disadvantage of lactobacilli is that they are more sensitive to low pH and SO2, and some producers of starters inoculate high doses of non-growing bacteria in grape musts. This work aims to grow some selected strains of Lactobacillus in grape juice and perform early MLF. With this strategy, beyond performing the MLF homolactic bacteria can contribute clearly to maintain or even decrease the final pH in wines by producing lactic acid from sugars; they also produce more complex wines, and prevent the spoilage of an undesired late MLF in bottles. 

To perform this selection, twelve Lactobacillus strains were successively inoculated after adapting to the lowering of pH and the increasing concentration of SO2. The cell concentration of the inoculum was in the order of x 106 CFU/mL to allow growth and synthesis of lactic acid. All Lactobacillus strains gradually adapted to low pH and SO2 and could grow at pH 3.2 and the highest SO2 concentration, thereby maintaining or even increasing their final biomass. After 7 days, all strains always underwent MLF. Malic acid consumption rate and lactic acid production depend on the strain. The final pH of wines was maintained or even decreased, even when complete MLF was achieved. This strategy helps in biological acidification of wines against the loss of acidity derived from climate change.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

FERRER Sergi, POLO Lucía, ANDRÉS Lorena, PARDO Isabel

Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Spain

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Observatoire du Grenache en Vallée du Rhône: incidence du terroir sur la diversité analytique et sensorielle des vins

Rhone Valley A.O.C. Vineyards cover more than 70 000 hectares, of wich more than 40 000 plantedwith Grenache N. The Grenache observatory was created in 1995.

New genomic techniques for sustainable management of water stress and pathogen control

Context and purpose of the study. Climate changes pose the need to develop new grapevine varieties and rootstocks that are more tolerant to stress and diseases.

Focus on terroir studies in the eger wine region of Hungary

In 2001, the Hungarian Ministry of Agriculture and Rural Development designated the Institute of Geodesy, Cartography and Remote Sensing (FÖMI) to elaborate a Geographic Information System (GIS) supported Vineyard Register (VINGIS) in Hungary. The basis of this work was a qualification methodology (vineyard and wine cellar cadastre system) dating back to several decades, however, in the 1980s and 1990s the available geographical maps and information technology did not provide enough accuracy for an overall evaluation of viticultural areas. The reason for the VINGIS elaboration and development was an obligation resulting from the EU membership to ensure the agricultural subsidies for the wine–viticulture sector.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.