Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Adaptation of Lactobacilli towards low ph and SO2 to develop MLF in base musts for sparkling wines

Adaptation of Lactobacilli towards low ph and SO2 to develop MLF in base musts for sparkling wines

Abstract

In some white wines, malolactic fermentation (MLF) is very interesting, and for low pH wines this process is particularly difficult. Although MLF is generally not recommended for sparkling white wine, some winemakers prefer to promote MLF to contribute to organoleptic complexity. Oenococcus oeni is generally the bacterium of choice for MLF. However, people’s interest in other species (such as Lactobacillus) is increasing. However, one disadvantage of lactobacilli is that they are more sensitive to low pH and SO2, and some producers of starters inoculate high doses of non-growing bacteria in grape musts. This work aims to grow some selected strains of Lactobacillus in grape juice and perform early MLF. With this strategy, beyond performing the MLF homolactic bacteria can contribute clearly to maintain or even decrease the final pH in wines by producing lactic acid from sugars; they also produce more complex wines, and prevent the spoilage of an undesired late MLF in bottles. 

To perform this selection, twelve Lactobacillus strains were successively inoculated after adapting to the lowering of pH and the increasing concentration of SO2. The cell concentration of the inoculum was in the order of x 106 CFU/mL to allow growth and synthesis of lactic acid. All Lactobacillus strains gradually adapted to low pH and SO2 and could grow at pH 3.2 and the highest SO2 concentration, thereby maintaining or even increasing their final biomass. After 7 days, all strains always underwent MLF. Malic acid consumption rate and lactic acid production depend on the strain. The final pH of wines was maintained or even decreased, even when complete MLF was achieved. This strategy helps in biological acidification of wines against the loss of acidity derived from climate change.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

FERRER Sergi, POLO Lucía, ANDRÉS Lorena, PARDO Isabel

Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Spain

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Tokaj zonation, traditions and future prospects

La superficie actuelle de l’ensemble des vignobles est de 5.293 ha qui est repartie dans 27 communes (données officielles du Conseil National des Communes de montagnes).

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

Study of the interactions between wine anthocyanins and proline rich proteins

The interaction between tannins and salivary proteins is considered to be the basis of the phenomenon of wine astringency. Recently, some authors have revealed that some anthocyanins can also contribute to this mouthfeel sensation by interacting with proline rich proteins (PRPs). However, more studies are needed in order to elucidate the affinity of anthocyanins with these proteins.

New acacia gums fractions: how their features affect the foamability of sparkling base wines?

When sparkling wine is served, the first attribute perceived is foam1. Bentonite is usually added to wine in order to cause particle flocculation

Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Through the years, extensive studies have been conducted on fungal biodiversity during the winemaking process: from the vineyard until aging.